
INTEGRATING AUTOMATED REASONING WITH
MACHINE LEARNING FOR STRUCTURED PREDICTION

AND SCIENTIFIC DISCOVERY
by

Nan Jiang

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Computer Science

West Lafayette, Indiana

May 2025

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Yexiang Xue, Chair

Department of Computer Science, Purdue University

Dr. Willem-Jan Van Hoeve

Tepper School of Business, Carnegie Mellon University

Dr. Jean Honorio

School of Computing and Information Systems, University of Melbourne

Dr. Brian Bullins

Department of Computer Science, Purdue University

Approved by:

Dr. Voicu S. Popescu

2

Dedicated to my girlfriend Xiaoyi Zhu and my parents Xinlin Jiang and Gendi Qian.

3

ACKNOWLEDGMENTS

I would like to express my heartfelt gratitude to all those who have supported me in my

Ph.D. academic journey and contributed to the completion of this dissertation.

First and foremost, I am immensely grateful to my advisor, Professor Yexiang Xue, for his

invaluable guidance, unwavering support, and patient mentorship. Professor Xue fostered a

welcoming and inclusive lab environment for graduate students to study, communicate, and

collaborate. Under his mentorship, I embarked on the path of professional scientific research,

and he skillfully guided me through the obstacles and challenges in both my personal and

research life. His exceptional expertise, timely feedback, and continuous encouragement have

been pivotal in the completion of this work. Professor Xue is not only an academic advisor

to me but also a role model for my life. His friendly treatment of others, dedication to

his career, and devotion to his family have profoundly influenced my value system and will

continue to have a positive impact on my future endeavors.

I would like to extend my sincere appreciation to other committee members Professor

Willem-Jan Van Hoeve, Professor Jean Honorio, and Professor Brian Bullins for their time,

expertise, and constructive feedback. Their critical evaluations have significantly contributed

to the refinement and improvement of this dissertation.

I am thankful to my paper collaborators Jinzhao Li, Yi Gu, Md Nasim, Fan Ding, Chen

Luo and Maosen Zhang for their efficient collaboration, insightful discussions, and fruitful

assistance. Their contributions have enriched the outcomes of this work.

A special thanks go to my lab mates and friends Wenjie Bai, Qinlin Meng, and Wei Deng

for their help, understanding, and encouragement. It has been a privilege to work alongside

these talented and inspiring individuals, and I feel fortunate to have had the opportunity to

get to know their fascinating personalities.

4

TABLE OF CONTENTS

LIST OF TABLES . 12

LIST OF FIGURES . 16

ABSTRACT . 24

1 INTRODUCTION . 26
1.1 Borad Overview . 26
1.2 Brief Description of Each Chapter . 28
1.3 Summary . 34

2 Constraint Reasoning Embedded Structured Prediction 37
2.1 Introduction . 37
2.2 Preliminaries . 41

2.2.1 Structured Prediction . 41
2.2.2 Decision Diagrams . 45

2.3 Constraint Reasoning Embedded in Structured Prediction 49
2.3.1 Constrained Reasoning Embedded in Structured Prediction 50
2.3.2 Discussions . 54

2.4 Searching for the Optimal CORE-SP Structure 55
2.5 Applications . 58

2.5.1 Vehicle Dispatching Service Planning 58
2.5.2 If-Then Program Synthesis . 63
2.5.3 SQL Query Generation from Natural Language 68

2.6 Results and Analysis . 70
2.6.1 Vehicle Dispatching Service Planning 71
2.6.2 If-Then Program Synthesis . 75
2.6.3 SQL Query Generation from Natural Language 79

2.7 Summary . 80

3 Learning Combinatorial Structures via Markov Random Fields with Sampling through

Lovász Local Lemma . 82
3.1 Introduction . 82
3.2 Preliminaries . 84

5

3.3 Sampling through Lovász Local Lemma . 86
3.4 Neural Lovász Sampler . 88

3.4.1 Neural Lovász Sampler (Nelson) . 88
3.4.2 Contrastive Divergence-based Learning 92

3.5 Related Work . 93
3.6 Experiments . 93

3.6.1 Learn Random K-SAT Solutions with Preference 93
3.6.2 Sink-Free Orientation in Undirected Graphs 97
3.6.3 Learn Vehicle Delivery Routes . 99

3.7 Summary . 100

4 Controllable Language Generation via Combinatorial Constraint Satisfaction: A

Tree Search Enhanced Monte-Carlo Approach . 101
4.1 Introduction . 101
4.2 Language Generation via Combinatorial Constraint Satisfaction 103

4.2.1 Constraint Formulation . 104
4.3 Tree Search Enhanced MCMC . 104

4.3.1 Motivation: Breaking the Local “Low Acceptance” Barrier 106
4.3.2 Detailed Procedure of TSMH . 107

4.4 Experiments . 108
4.4.1 Experiment Settings . 109
4.4.2 Interrogative Sentence Generation . 109
4.4.3 Imperative Sentence Generation . 112
4.4.4 Sentence Generation with Given Sentiment Score 113

4.5 Summary . 114

5 Probabilistic Area Loss Minimization for Protein Sequence Alignment 115
5.1 Introduction . 115
5.2 Preliminary . 118

5.2.1 Pairwise Sequence Alignment . 118
5.3 Probabilistic Area Loss Minimization . 119

5.3.1 Two-step Model . 119
5.3.2 Model Learning . 121
5.3.3 Inference in Testing . 127

5.4 Experiments . 128
5.4.1 Learning Effectiveness for PALM . 130

6

5.4.2 Ablation Study on Weight Hyper-parameter 131
5.4.3 Time Efficiency for Gradient Computation 131

5.5 Summary . 131

6 Symbolic Regression via Control Variable Genetic Programming 133
6.1 Introduction . 133
6.2 Preliminaries . 135
6.3 Control Variable Genetic Programming . 136

6.3.1 Control Variable Experiment . 136
6.3.2 Control Variable Genetic Programming 138
6.3.3 Theoretical Analysis . 141

6.4 Related Work . 145
6.5 Experiments . 146

6.5.1 Experimental Settings . 146
6.5.2 Experimental Analysis . 148

6.6 Summary . 150

7 Racing Control Variable Genetic Programming for Symbolic Regression 152
7.1 Introduction . 152
7.2 Preliminaries . 155

7.2.1 Symbolic Regression for Scientific Discovery 155
7.2.2 Control Variable Trials . 157

7.3 Methodology . 158
7.3.1 Motivation . 158
7.3.2 Racing Control Variable Genetic Programming 160

7.4 Related Work . 163
7.5 Experiments . 164

7.5.1 Experimental Settings . 164
7.5.2 Experimental Result Analysis . 165

7.6 Summary . 167

8 Vertical Symbolic Regression via Deep Policy Gradient 168
8.1 Introduction . 168
8.2 Preliminaries . 170
8.3 Methodology . 173

8.3.1 Expression Represented as Grammar Rules 175
8.3.2 Expression Sampling from Recurrent Network 177

7

8.4 Related Work . 179
8.5 Experiment . 180

8.5.1 Regression on Algebraic Equations 180
8.5.2 Regression on Ordinary Differential Equations 182

8.6 Summary . 183

9 Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait

Sketching . 185
9.1 Introduction . 185
9.2 Preliminaries . 187
9.3 Methodology . 189

9.3.1 Motivation . 189
9.3.2 The Learning Pipeline . 192

9.4 Related Work . 195
9.5 Experiments . 196

9.5.1 Experimental Settings . 196
9.5.2 Experimental Analysis . 198

9.6 Summary . 200

10 Future Work . 201
10.1 Automatic Discovery of New Knowledge for Novel Materials 201
10.2 Combining AR and ML to accelerate Automatic Theorem Proving 201
10.3 Providing Safety Guarantees on high-stake AI-driven system 202

REFERENCES . 203

A Appendix for Chapter 3 . 226
A.1 Probability Distribution of Algorithm 2 . 226

A.1.1 Definitions and Notations . 226
A.1.2 Ratio Property Lemma . 228
A.1.3 Proof of Theorem 3.3.1 . 230
A.1.4 Difference to the Original Proof . 232
A.1.5 A Running Example from the Markov Chain Monte Carlo Perspective 233

A.2 Running Time Analysis of Algorithm 2 . 235
A.2.1 Definitions and Notations . 235
A.2.2 An Upper Bound on Expected Running Time 239

8

A.2.3 Difference to the Existing Proof . 240
A.3 Constrained MRF Model . 241

A.3.1 Single Variable Form of Constrained MRF 241
A.3.2 Gradient of log-Partition Function 242

A.4 Experiment Settings and Configurations . 242
A.4.1 Implementation Details . 242
A.4.2 Learn Random K-SAT Solutions with Preference 245
A.4.3 Learn Sink-Free Orientation in Undirected Graphs 246
A.4.4 Learn Vehicle Delivery Routes . 248
A.4.5 Detailed Baselines Configuation . 249
A.4.6 Detailed Definition of Evaluation Metrics 249
A.4.7 Hyper-parameter Settings . 251

B Appendix for Chapter 4 . 252
B.1 Detailed Experiment Settings . 252

B.1.1 Interrogative Sentences Generation 252
B.1.2 Imperative Sentences Generation . 253
B.1.3 Sentiment Sentence Generation . 253

B.2 Case Studies . 253

C Appendix for Chapter 5 . 256
C.1 Convergence Analysis of the Maximum Likelihood Learning 256

C.1.1 Basic Definitions and Properties . 256
C.2 The Relationship between Variance and L-smoothness 258
C.3 Proof of Theorem 5.3.2 . 260

D Appendix for Chapter 6 . 263
D.1 Proof of Lemma 6.3.2 . 263
D.2 Experiment Settings . 264

D.2.1 Dataset Configuration . 264
D.2.2 Evaluation Metrics . 265
D.2.3 Baselines implementation . 265
D.2.4 Hyper-parameter Configurations . 267

D.3 Extended Experimental Analysis . 267

E Appendix for Chapter 7 . 270
E.1 Implementation . 270

9

E.2 Genetic Programming Algorithm in Racing-CVGP 270
E.3 Experiment Settings . 273

E.3.1 Dataset Configuration . 273
E.3.2 Evaluation Metrics . 273
E.3.3 Baseline Implementation . 274
E.3.4 Optimizers . 278
E.3.5 Hyper-parameter Configuration . 278

E.4 Extra Experimental Analysis . 280
E.4.1 Impact of Experiment Schedules: See Figure E.2,E.3 280
E.4.2 Empirical Running Time: See Figure E.4 280
E.4.3 Impact of Evaluation Metrics: See Figure E.5 280
E.4.4 Impact of Optimizers . 281

F Appendix for Chapter 8 . 283
F.1 Direct Integration of Vertical Symbolic Regression with Deep Policy Gradient 283

F.1.1 Constraint-based Integration . 285
F.1.2 Concatenation-based Integration . 286

F.2 Extended Explanation of Vsr-Dpg method 287
F.2.1 Sequential Decision Making Formulation 288
F.2.2 Implementation of VSR-DPG . 290

F.3 Experiment Settings . 291
F.3.1 Evaluation Metrics . 291
F.3.2 Symbolic Regression on Algebraic Equations 292
F.3.3 Extra Results . 297
F.3.4 Symbolic Regression on Ordinary Differential Equations 298

F.4 Extra Experiments . 301
F.4.1 Discovered Algebraic Equations by the Learning Algorithms 301
F.4.2 Discovered Differential Equations by each Learning Algorithm 303

G Appendix for Chapter 9 . 306
G.1 Extended Preliminaries . 306
G.2 Extended Explanation of Apps method . 308

G.2.1 Implementation of Apps . 311
G.2.2 Limitation and Broader Impact . 313

G.3 Experiment Settings . 313
G.3.1 Baselines . 313

10

G.3.2 Evaluation Metrics . 315
G.3.3 Computational Resource . 316
G.3.4 Extended Experimental Results . 316
G.3.5 Dataset . 317

11

LIST OF TABLES

1.1 Summary of all the reasoning tools and applications in this thesis. 34

2.1 The IFTTT and Zapier dataset statistics. 76

2.2 The relaxed and exact Core-Sp modules boost the percentage of valid programs
generated and the accuracy for the if-then program synthesis task on both the
IFTTT and the Zapier data sets. Exact Core-Sp produces 100% valid programs
while Core-Sp with the best relaxed MDD produced by the Algorithm 1 leads
to the best accuracy in the prediction and close to 100% valid programs. 78

2.3 Core-Sp outperforms the previous state-of-the-art SQLNova on three testing
sets in SQL query generation. Core-Sp leads to 100% valid SQL queries gener-
ated and increases in both the execution accuracy and the logical accuracy com-
pared with SQLNova for the Text2SQL generation task. The top table shows the
accuracy of predicting each field in the SQL queries for both models. 80

3.1 Sampling efficiency and accuracy for learning K-SAT solutions with preferences.
The proposed Nelson is the most efficient (see Training Time Per Epoch) and
always generates valid assignments (see Validness) with a small approximation
error (see Approximation Error of Gradient) against all baselines. T.O. means
time out. and QS stands for the Quicksampler. 95

3.2 The quality of learning outcomes for learning random K-SAT solutions with
preferences. Nelson achieves the best likelihood and MAP@10 scores. T.O. is
time out. 96

3.3 Sample efficiency and learning performance of the sink-free orientation task.
Nelson is the most efficient (see Training Time Per Epoch) and always gen-
erates valid assignments (see Validness), has the smallest error approximating
gradients, and has the best learning performance (see MAP@10) among all ap-
proaches. 98

4.1 Our method TSMH outperforms CGMH by generating sentences that satisfy
more constraints, are of good quality and are likely to be natural language. Col-
umn Valid% shows the percentage of generated sentences that satisfy all con-
straints, which TSMH clearly leads baselines. In addition, TSMH has better
acceptance rates (Accept%). The language generated by TSMH is also of good
quality, because it matches other models in language model scores PGPT2(x). Mul-
tiplying both the language model score and the constraint score, the sentences
generated by TSMH tend to attain higher stationary probability π(x). 109

4.2 Human evaluation on the quality of the generated interrogative sentences from
keywords in terms of fluency and grammar. Most human participants (native
speakers) agree that the sentences generated by our TSMH are better in quality
compared to CGMH. 110

12

4.3 Case study of generating interrogative sentences with keywords. Sentences gen-
erated by our method cover all the input keywords. Full case study is in Table B.1.111

4.4 Comparison with UQA. Our TSMH outperforms UQA in terms of the percent-
age of satisfying the interrogative sentence constraints and has a higher score
predicted by a language model, despite UQA being trained on specific interrog-
ative sentences while our method is not trained at all. 112

4.5 Generate sentences with positive sentiment. Half of the inputs are extracted
from positive sentences, and the other half are from negative, which are harder
to transform into positive sentences. 112

4.6 Comparison with CtrlGen [138] over the “Negative to Positive” subtask with
acceptance rate, language score and sentiment score metrics. 113

5.1 Comparison of precision and recall between our method and dynamic program-
ming (DP) over different lengths of protein sequences on PDB [172] dataset.
4-off/10-off are the relaxed measures. PALM gets better results especially on
longer sequences and remote homologies than the competing approach. 128

5.2 Ablation study on hyper-parameter λ. When λ approaches infinity, area distance
becomes more important in the inference of â during training, which leads to
â more similar to the ground-truth alignment a∗. It can be seen that when we
select a suitable λ that strikes a balance between the area distance and the score
function, we can learn a better model than pure maximum likelihood learning
(when λ→ +∞). 130

5.3 Time efficiency of computing the gradient among different testing sets. PALM is
much time efficient than the competing method Autograd, which computes the
exact gradient by automatically back-propagation, among all length intervals of
two protein sequences. 132

6.1 Median (50%) and 75%-quantile NMSE values of the symbolic expressions found
by all the algorithms on several noiseless benchmark datasets. Our CVGP finds
symbolic expressions with the smallest NMSEs. 148

6.2 Median (50%) and 75%-quantile NMSE values of the symbolic expressions found
by all the algorithms on several noisy benchmark datasets (Gaussian noise with
zero mean and standard deviation 0.1 is added). Our CVGP finds symbolic
expressions with the smallest NMSEs. 149

6.3 Ground-truth recovery rate comparison. Our CVGP has a higher rate of recov-
ering the ground-truth expressions compared to GP on 3 simple datasets. 150

7.1 On Trigonometric datasets, median (50%) and 75%-quantile NMSE values of
the expressions found by all the algorithms. Our Racing-CVGP finds symbolic
expressions with the smallest NMSEs. “T.O.” implies the algorithm is timed
out for 48 hours. The 3-tuples at the top (·, ·, ·) indicate the number of input
variables, singular terms, and cross terms in the expression. 165

13

7.2 On Livermore2 and Feynman datasets, median (50%) and 75%-quantile NMSE
values of the symbolic expressions found by all the algorithms. Our Racing-
CVGP finds symbolic expressions with the smallest NMSEs. n is the number of
independent variables in the expression. 167

8.1 On selected algebraic equation datasets, median (50%-quartile) of NMSE values
of the best-predicted expressions found by all the algorithms. The set of math-
ematical operator is Op = {+,−,×, sin, cos, const}. The 3-tuples at the top
(·, ·, ·) indicate the number of free variables, singular terms, and cross terms in
the ground-truth expressions generating the dataset. Op stands for the set of
allowed operators. “T.O.” implies the algorithm is timed out for 48 hours. . . . 181

8.2 On large-scale algebraic equation dataset, with reported Median NMSE values,
our Vsr-Dpg scales better to more variable settings than baselines due to the
control variable experiment. 182

8.3 On selected algebraic equations, the exact recovery rate over the best-predicted
found by all the algorithms. Our Vsr-Dpg has a higher rate of recovering the
ground-truth expressions compared to baselines. 182

8.4 On the differential equation dataset, (R2 ≥ 0.9999)-based accuracy is reported
over the best-predicted expression found by all the algorithms. Our Vsr-Dpg
method can discover the governing expressions with a much higher accuracy rate
than baselines. 184

9.1 On the noiseless datasets with regular time sequence (σ2 = 0, α = 0), Median
NMSE is reported over the best-predicted expression found by all the algorithms.
Our Apps method can discover the governing expressions with smaller NMSE
values than baselines, under the noiseless setting. T.O. means termination with
a 24-hour limit. 197

9.2 On the Strogatz dataset, the Median NMSE is reported over the best-predicted
expression found by all the algorithms under noisy or irregular time sequence
settings. 197

9.3 Ranking comparison with different active learning strategies. Apps shows a
smaller ranking-based distance than other strategies, which is better for ranking
those best-predicted expressions. Also Apps takes less memory consumption and
less computational time because the sketching step itself is lightweight. 200

A.1 Summary of all the notations used in the theoretical analysis of Algorithm 2. . . 227

A.2 4 constraints for converting pairwise terms in the potential function into single
variable form. 241

B.1 Case study of generating interrogative and imperative sentences with keywords. 254

D.1 Example expressions used in our experiments with different dataset configurations
and the set of operands. 264

14

D.2 Major hyper-parameters settings for all the algorithms considered in the experiment.266

E.1 Detailed equation in Livermore2 datasets (part-1). 274

E.2 Detailed equation in Livermore2 datasets (part-2). 275

E.3 Detailed equation in other small-scale datasets (part-3). n stands for the number
of maximum variables. 276

E.4 Detailed equations in Feynman datasets (n = 4). n stands for the number of
maximum variables. 277

E.5 Detailed equations in Feynman datasets (n = 5). n stands for the number of
maximum variables. 278

E.6 Major hyper-parameters settings for all the algorithms considered in the experiment.279

F.1 Major hyper-parameters settings for all the algorithms considered in the experiment.294

F.2 10 randomly drawn expressions with 2 variables, 1 single term, and 1 cross term
with operators {sin, cos, +,−,×}. 296

F.3 Biological definition of variables in Glycolysis Oscillations. The allowed range
of initial states for the training data set and the standard deviation of the limit
cycle are also included. 300

G.1 Major hyper-parameters settings for all the algorithms considered in the experiment.315

G.2 Selected Strogatz dataset with variable n = 1. 320

G.3 Selected Strongatz dataset with variables n = 2. 321

G.4 The Strogatz dataset with variables n = 3. 322

G.5 Selected ODEBase dataset with variables n = 2. 323

G.6 Selected ODEBase dataset with variables n = 3. 324

15

LIST OF FIGURES

2.1 (a) Our proposed Core-Sp framework embeds constraint reasoning in machine
learning for structured prediction. We demonstrate the effectiveness of Core-Sp
on vehicle dispatching service, if-then program synthesis, and Text2SQL gener-
ation tasks. (b) At a high level, Core-Sp (in orange colored box) is a fully
differentiable layer that simulates a path descending in the corresponding de-
cision diagram. Core-Sp filters out the infeasible output from the structured
output to ensure constraint satisfaction. 38

2.2 Illustration of Multi-valued Decision Diagrams (MDDs) for decision variables
x1, x2, x3. (a) an exact MDD with all variable assignments satisfying two con-
straints: all-diff(x1, x2, x3) and x1 6= v1; (b) A width-1 relaxed MDD for the
exact MDD in (a); (c) A width-2 relaxed MDD, which is formed by combining
nodes u4 and u5 of the MDD in (a). 46

2.3 Node splitting and arc filtering for MDDs for variables x1, x2, x3. (a) A width-1
relaxed MDD as in Figure 2.2(b). (b) Split node u1 into û1 and ũ1. (c) Filter
arcs e(û1, u2) = v2, e(ũ1, u2) = v3 that violate the constraint all-diff(x1, x2, x3).
The arcs in dashed lines are removed. (d) A width-2 relaxed MDD after one
iteration of node splitting and arc filtering. 47

2.4 Illustration of (a) a sequence-to-sequence model which generates an output cor-
responding to (b) a path in the multi-valued decision diagram. (a) a sequence-
to-sequence model takes in input x and random variables z, and outputs y1 = v2,
y2 = v3 and y3 = v1 in three steps. (b) the assignment (y1, y2, y3) = (v2, v3, v1)
corresponds to path s

v2−→ u1
v3−→ u4

v1−→ t in the multi-valued decision diagram. . 49

2.5 Architecture of embedding Core-Sp into a sequence-to-sequence model for the
decision variables y1, y2, y3, where the highlighted Core-Sp module encodes the
exact MDD in Figure 2.2(a). Core-Sp descends layer-by-layer in the MDD.
Initially, the pivot node of Core-Sp is at root s. The node s limits the value of
y1 to be y1 ∈ val(s) = {v2, v3}. If the model picks y1 = v2, then the pivot node
moves to node u1 following the arc e(s, u1) = v2. Next, the node u1 limits the
value of y2 to be y2 ∈ val(u1) = {v1, v3}. If the neural model picks y2 = v3, then
the pivot node shifts to node u4 following the arc e(u1, u4) = v3. Finally, the
pivot node descends to u4 following the single outgoing arc: e(u4, t) = v1. Hence
the assignment for variable y3 becomes y3 = v1. 53

2.6 The MDDs used in vehicle dispatching service planning. (a) An exact MDD
which models the visit to “Hof”, or “Haar”, or both of them. All arcs of solid
lines are of first type and arcs of dashed lines are of second type, which directs
the delivery agent to the stop location t. (b) A width-1 relaxed MDD, which is
formed by combining nodes u1 and u2 of the exact MDD. 59

16

2.7 The conditional GAN with Core-Sp module for the vehicle dispatching ser-
vice planning problem. x represents the requested delivery locations in day i.
(ỹ1, ỹ2, . . .) represents the generated path from Core-Sp, represented using indi-
cator vectors (q1, q2, . . .). The Generator G takes the set of locations x as input
and use a sequential encoder to learn a representational vector. Then it outputs a
sequence of score vector (o1, o2, · · ·) using a sequential decoder, where oj denotes
the likelihood of picking the next locations at j-th step. The Core-Sp module
removes invalid locations. The Discriminator D is used to separate the real path
(y1, y2, . . .) from the generated path (ỹ1, ỹ2, . . .). 61

2.8 An example of if-then program synthesis task. The input is a natural language
description of the program. The output are four labels: trigger-service,
trigger-function, action-service and action-function. The semantics of
the synthesized if-then program are: if trigger-function happened at trigger-
service, then take action-function at the action-service. 63

2.9 Examples of a relaxed and an exact MDD for the if-then program synthesis task.
The exact MDD in (b) models constraints that only the timer service is provided
by Alexa, and only the streaming service is provided by Youtube. Similarly, only
Hue provides the light service, and only Twitter provides the tweet service. (a) is
a relaxed MDD, where both trigger services provide both trigger functions, and
both action services provide action functions. 66

2.10 Model structure of If-then program synthesis. Text input x1, x2, · · · , xT is fed
into bi-directional LSTM with self attention mechanism. The un-normalized
likelihood vectors ots, otf , oas, oaf are fed into the Core-Sp module for constraint
satisfaction. 67

2.11 An example for the Text2SQL generation task. The input is the text query “How
many schools did player number 3 play at?” and the table header “Player, No.,
Position, School” from the relational database. The output should be the SQL
query: SELECT COUNT "School" WHERE "No." = "3". 69

2.12 (Left) the memory usage of relaxed MDDs. (Right) The percentage of valid
routes produced by Core-Sp using relaxed MDDs. 73

2.13 Our exact Core-Sp models outputs 100% valid routes in the vehicle service
dispatching task, while competing approaches, namely conditional GAN (cGAN)
and cGAN with post-processing cannot guarantee valid routes. Experiments are
carried out with varying maximum number of locations in the daily requests.
(Left) Exact MDDs are created by the iterative algorithm described in the main
text. (Right) Relaxed MDDs are generated with max width 220 to ensure that
the memory consumption is less than 1 GB. 74

17

2.14 Comparing the normalized reward value of the model with exact Core-Sp and
with post-processing methods. Core-Sp captures drivers’ hidden preferences in
the vehicle service dispatching problem. The hidden preferences are reflected by
the normalized reward (see the main text for its definition). Core-Sp and cGAN
with post-processing both achieve good normalized rewards. 75

2.15 Percentage of valid programs and MDD memory consumption on IFTTT and
Zapier datasets. Core-Sp outperforms the state-of-the-art approach LatentAt-
tention ([42]) in generating valid if-then programs. The percentages of valid
programs generated by Core-Sp embedding MDDs with different widths are
shown for the IFTTT (top left) and Zapier (bottom left) datasets. Core-Sp
model that embeds the exact MDD produces 100% valid programs on the two
datasets. The relaxed and exact MDD for the IFTTT dataset takes less than 4
MB and for the Zaiper dataset takes less than 20 MB memory space. 77

2.16 The Core-Sp module (red line) brings approximately 1−2% increase in accuracy
for the IFTTT data set and 2% increase for the Zapier data set for the if-then
program synthesis task. The LatentAttention model (blue) is the previous state-
of-the-art, which cannot guarantee the validity of the programs generated. . . . 78

2.17 The execution accuracy and logical accuracy over training iterations for both
Core-Sp and SQLNova. Core-Sp leads to higher execution and logical accuracy
throughout training iterations. 81

3.1 Empirical running time and the percentage of valid structures sampled uniformly
at random from solutions of K-SAT problems. Nelson always generates valid
solutions and is the most efficient sampler. 97

3.2 Empirical running time, the percentage of valid solutions generated, and the
number of resample steps for weighted sample generation of K-SAT solutions.
Nelson scales the best among all approaches and always generates valid solutions. 97

3.3 Frequency histograms for the number of resample and the total time of Nelson
method for uniformly sampling visiting paths for vehicle routing problem. . . . 100

4.1 (a) Language generation via supervised method and constraint satisfaction. (b)
Our TSMH traverses the probabilistic space of high-quality sentences more ef-
fectively than the baseline CGMH. “R, I, D” means replace, insert, and delete
operations. 102

18

4.2 Our TSMH method significantly outperforms CGMH in terms of acceptance rate,
in generating sentences with combinatorial constraints. (Left) CGMH must
pass intermediate sentence states, which have very low acceptance rate to reach
the intermediate sentence “Is Paris located in France?” starting from sentence
“Paris is located in France”. This results in the poor performance of CGMH
when handling combinatorial constraints. (Right) By embedding a tree search
into MCMC, TSMH can reach the an intermediate sentence from the starting
sentence in one step, and with an acceptance rate of 100%. R, I, D mean replace,
insert, delete. See Section 4.3.1 for a detailed discussion. 105

5.1 Illustration of protein sequence alignment and the area distance. (Left) The task
is to align two amino acid sequences S and T , where one amino acid from one
sequence can be aligned to either one amino acid from the other sequence (match),
or to a gap (insertion, marked by -). (Right) Such an alignment becomes a path
in the alignment matrix, where a diagonal transition represents a match, and
a horizontal or a vertical transition represents an insertion. The area between
one predicted alignment and ground-truth is viewed as the area distance between
them. Both of the two predicted alignments correctly predicted one edge on the
ground truth alignment, yet the one with smaller area loss (i.e., “pred1”) is much
closer to the ground truth. 116

5.2 Sampling a path from the original until reaching the bottom-right corner in the
alignment matrix. At point (i, j), the sampling approach first calculates the
probability of taking the options M, IS, IT at this point, and then samples one
option according to the probability value. 124

6.1 An example of two trials of a control variable experiment. (a) The data of the
experiment is generated by the ground-truth expression φ = x1x3 − x2x4. (b) If
we control vc = {x2, x3, x4} and only allow vf = {x1} to vary, it looks like the
data are generated from the reduced-form equation φ′ = C1x1 − C2. (c, d) The
generated data in two trials of the control variable experiments. The controlled
variables are fixed within each trial but vary across trials. 136

6.2 Running example of Algorithm 5. (a) Initially, a reduced-form equation φ′ =
C1x1−C2 is found via fitting control variable data in which x2, x3, x4 are held as
constants and only x1 is allowed to vary. Two leaves nodes C1, C2 are as summary
constants (colored blue). (b) This equation is expanded to C3x1 − C4x2 in the
second stage via fitting the data in which only x3, x4 are held as constants. (c,d)
This process continues until the ground-truth equation φ = x1x3−x2x4 is found.
The data generated for control variable experiment trials in each stage are shown
at the bottom. 141

6.3 (a-d) Box plots of evaluation metrics for the expressions found by different al-
gorithms on the noiseless dataset. (e-f) Box plots in NMSE values for the ex-
pressions found by CVGP and GP over benchmark datasets with different noise
levels. Our CVGP is consistently the best regardless of the evaluation metrics
and noise levels. 150

19

7.1 Impact of experiment schedules (noted as π) on learning performance of control
variable genetic programming. For the discovery of expression with 4 variables,
there exists a better experiment schedule (i.e., π4) among all schedules than the
default one (i.e., π1), in terms of normalized mean square error (more examples
in Appendix E.4.1). 153

7.2 The favorable experiment schedule πg is survived while the unfavorable schedule
πr is early stopped under our racing experiment schedule scheme. (a) Multiple
steps of edits are needed to transform from a randomly initialized expression
“x1” to a complex expression “c1 + c2 cos(x1)”. The newly inserted parts (by
genetic programming algorithm) are highlighted in blue. (b) The red experiment
schedule πr is unfavorable because it requires many edits to reach the expression
tree in the red box (shown in (a)). The red schedule is thus stopped early. (c) The
green experiment schedule πg is promising since it is relatively easy to discover,
and every change in the expression tree is reasonable. Section 7.3.1 provides a
detailed explanation. 154

7.3 (a) When controlling variables x2 and x3, the ground-truth expression φ =
x2 cos(x1) + x3 reduces to c1 cos(x1) + c2. (b) Controlling variables x1 and x2
reduces the ground-truth to c1x3. 156

7.4 On selected Trigonometric datasets, quartiles of the total running time of all
the methods. Our Racing-CVGP method takes less time than CVGP by early
stopping those unfavorable experiment schedules. 166

7.5 On selected Trigonometric datasets, MSE and NMSE evaluation metrics of the
expressions found by different algorithms. 166

7.6 On a selected Trigonometric dataset, quartiles of the total running time of Racing-
CVGP, CVGP, and CVGP with all the experiment schedules. Our Racing-CVGP
saves a great portion of time compared with CVGP with all the schedules for
expressions with n = 4 variables. 167

8.1 Our Vsr-Dpg follows a vertical path (colored blue) better than the horizontal
path (colored red), in the scientific discovery of Joule’s first law. (Left) The
vertical discovery starts by finding the relationship between two factors (Q, T) in
a reduced hypothesis space with other factors held constant. It then finds models
in extended hypothesis space with three factors (Q, I, T), and finally in the full
hypothesis space. Searching following the vertical paths is way cheaper since the
sizes of the reduced hypothesis spaces in the first few steps are exponentially
smaller than the full hypothesis space. (Right) Our Vsr-Dpg extends the
equation in each step. The placeholder A indicates a sub-expression. 169

20

8.2 The proposed Vsr-Dpg for the discovery of expression φ = x1×x3−x2×x4. (a)
Initially, a reduced-form equation φ = x1 × C1 − C2 is found, in which variables
x2, x3, x4 are held constant and only variable x1 is allowed to vary. C1 and
C2 (colored blue) are summary constants, which are sub-expressions containing
the controlled variables. The open constants in the expression are fitted by the
corresponding controlled variable data. (b) In the second stage, this equation is
expanded to x1 × C3 − x2 × C4. (c, d) This process continues until the ground-
truth equation φ = x1x3−x2x4 is found. (e, f) Under those controlled variables,
the deep recurrent neural network predicts a categorical distribution over the
available grammar rules. The controlled variables are excited in the grammar
rules. The best-predicted expression in (e) is reformulated as the start symbol in
(f), that is x1 × A− A. 171

8.3 Convert a sequence of grammar rules into a valid expression. Each rule expands
the first non-terminal symbol in the squared box. The parts that get expanded
are color-highlighted. 176

8.4 Visualization of Vsr-Dpg controlling variables x1 (Left) and x2 (Right) for the
Lorenz attractor. The data of our Vsr-Dpg are drawn from the intersection
of the mesh plane and the curve on the Lorenz attractor. In comparison, the
ODEFormer draws data by picking a consecutive sequence {(ti, x(ti))}N

t=0 without
knowing its time derivative on the curve. 184

9.1 The performance of predicted ODE from passively-learned baseline is heavily
influenced by the collected training data while our Apps method is not. The
dots represent noisy ground-truth trajectory data, and the lines show predicted
values of state variables under identical initial conditions. (a, b) Our Apps and
the baseline predict accurately for the trajectory starting at x0 = (0, 1). (c, d)
For the trajectory starting at x0 = (4,−1), the baseline performs poorly while
Apps maintains accuracy. 186

9.2 The pipeline of Apps for symbolic discovery of ODEs consists of 3 steps: (a)
ODEs are sampled from the sequential decoder by iteratively sampling grammar
rules. The predicted rule at each step serves as input for the decoder in the
subsequent step. (b) The sampled sequence of grammar rules is converted into
a valid ODE with n = 2 variables. Each rule expands the first non-terminal
symbol, with the expanded parts highlighted in blue colors for clarity. (c) The
phase portrait for the predicted ODEs (e.g., φ1, φ2, φ3) is sketched, and regions
with high informativeness, such as u2, are identified to query the new trajectory
data. In region u2, φ1 exhibits a saddle point, φ2 moves downward, and φ3
moves upward. In contrast, in region u1, all trajectories move from right to left.
Differentiating the predicted expressions is easier in region u2 than in region u1. 189

9.3 On the selected data (Strogatz dataset with n = 1), quartiles of NMSE and R2

scores of the learning algorithms. 198

21

A.1 Implementation pipeline of the Nelson-CD algorithm with m = 1. The proposed
Nelson can be efficiently adapted to a Pytorch-based machine learning library
and enforces constraint satisfaction during learning. 245

A.2 (a) An un-directed graph G(V, E) where the vertices are V = {v1, v2, v3, v4} and
the un-directed edges are E = {e1 = (v1, v2), e2 = (v1, v3), e3 = (v2, v3), e4 =
(v2, v4), e5 = (v3, v4)}. (b) A possible sink-free orientation of the edges in the
graph and its matrix representation x, where every vertex has at least one out-
going edge. 247

A.3 The distribution of resampling steps in the Nelson and Algorithmic-LLL [94].
Both of them get a valid sample within Ttryouts. Nelson takes much fewer re-
samples than Algorithmic-LLL because it resamples all the violated clauses at
every iteration while Algorithmic-LLL only resamples one of them. 251

D.1 Quartiles of NMSE values of all the methods over several noiseless datasets. Our
CVGP shows a consistent improvement over all the baselines considered, among
all the datasets. 268

D.2 Quartiles of NMSE values of all the methods over several noisy datasets. Our
CVGP shows a consistent improvement over all the baselines considered, among
all the datasets. 269

E.1 Visualization of the FreezeEquation function. 0 implies the node is non-editable
and 1 implies the node is editable, by the GP algorithm. The FreezeEquation
function will increase the probability of finding expression trees with close-to-zero
fitness scores. 270

E.2 Impact of experiment schedules (noted as π) on learning performance of control
variable genetic programming, on the Trigonometric (4, 4, 6) with operator set
{+,−,×,÷, sin, cos} dataset. For the discovery of 10 different expressions with 4
variables, there always exists a better experiment schedule than the default one
(i.e., π1), in terms of normalized mean square error. 279

E.3 (Continued) Impact of experiment schedules (noted as π) on learning performance
of control variable genetic programming. For the discovery of expression with 4
variables, there always exists a better experiment schedule than the default one
(i.e., π1), in terms of normalized mean square error. 280

E.4 On Trigonometric datasets, quartiles of the total running time of all the methods.
Our Racing-CVGP method takes less time than CVGP by early stopping those
unfavorable experiment schedules. 281

E.5 On selected Trigonometric datasets, MSE, NMSE, RMSE, and NRMSE evalua-
tion metrics of the expressions found by different algorithms. 281

22

E.6 Impact of optimizers on finding the values of open constants for non-convex ex-
pressions. Over 10 randomly generated expressions involving 4 variables, SHGO
can find better solutions (in terms of NMSE metric) than local optimizers (in-
cluding Nelder-Mead, BFGS, CG), while the time taken by SHGO is higher than
local optimizers. 282

F.1 Constraint-based integration of deep reinforcement learning with vertical sym-
bolic regression. The constraints enforce the output of RNN output the given
token at each step. It has limitations in passing the gradient to the parameters
of RNN and also requires heavy engineering of different constraints. (a) Initially,
the RNN to learn a reduced form equation with variables x2, x3, x4 controlled.
The RNN learns to sample the best preorder traversal of the reduced form expres-
sion tree from the available tokens. No constraints are applied in the first round.
(b, e) Given the best-predicted expression φ1 represented as (−,×, x1, C1, C2) at
the first round, the RNN is used to predict an expression with control variables
x3, x4. For the first four steps, the constraints are applied to mask out other to-
kens in the output, to enforce that the output must be −,×, x1, C1. Since C1 is a
summary constant, the RNN samples a sub-expression with no constraints start-
ing at the 5th step, which is C3. In 6-th step, with the termination of the prior
sub-expression, constraints are applied to enforce the RNN outputs C2. Starting
at the 7th step, we sample a subexpression x2 × C4. (c,d) The rest of the steps
in the pipeline of vertical symbolic regression using expression tree representation.284

F.2 Concatenation-based integration of deep reinforcement learning with vertical
symbolic regression. Multiple layers of RNN are concatenated together to im-
plement the vertical symbolic regression. The limitation is we need to store all
the parameters of previously trained RNN, leading to a joint model with mas-
sive memory consumption. (a,b,c,d) The pipeline of vertical symbolic regression
using expression tree representation. (e) The first layer takes the input of the
best-predicted expression φ, and the second layer uses the hidden vectors of the
4-th step and 5-th step of the first layer, as input to predict two separated se-
quence C3 and ×, x2, C4. The parameters of the first layer are frozen while the
parameters of the second layer are trained. 286

F.3 Measurement of variability for the experiments. quantiles (25%, 50%, 75%) of
(Left) Normalized MSE values of discovered equations and (Right) execution time
of the learning algorithm. 297

G.1 Implemented 4th order Runge Kutter method. 312

G.2 The given set of best-predicted ODEs for Table 9.3. 317

G.3 Selected phase portrait of Strogatz dataset with variables n = 2. 318

G.4 Selected phase portrait of Strogatz dataset with variables n = 3. 319

23

ABSTRACT

Structural data are ubiquitous in our daily lives. However, decision-making with models

learned from such data still remains a significant challenge when Machine Learning (ML) and

Automated Reasoning (AR) are applied in isolation. Learning without reasoning often fails

to generate output satisfying combinatorial constraints, while reasoning without learning

often yields rigid models, that lack flexibility to evolving environments. Integrating ML and

AR is essential but remains largely unsolved.

My research focuses on embedding automated reasoning into machine learning,

to tackle challenging problems in structured prediction and AI-driven scientific discovery. My

models are able to generate valid outputs satisfying complex combinatorial constraints, which

greatly surpasses pure learning-based approaches. Moreover, these models are adaptive to

evolving training data distributions, addressing the limitations of pure reasoning algorithms.

My learning algorithms offer tight theoretical guarantees and demonstrate great empirical

improvements in accuracy. Specifically, my contributions are:

(a) Combining AR and ML to ensure constraint satisfaction in machine learn-

ing: By embedding AR solvers as differentiable layers into neural network-based ML models,

my work ensures constraint satisfaction of the predicted output when solving a variety of

structural learning problems across operations research, combinatorial optimization, and nat-

ural language processing. Notably, in a data-driven vehicle dispatching task, our approach

generates routes that 100% satisfy constraints while previous approaches produce less than

1% valid routes.

(b) Combining AR and ML to accelerate AI-driven scientific discovery: Inte-

grating scientific approach-inspired reasoning, my work accelerates the discovery of physical

knowledge from experimental data. My approach significantly extended the capabilities of

existing methods in solving datasets with multiple independent variables. My approach suc-

cessfully discovers ground-truth scientific expressions involving up to 50 variables, whereas

previous approaches struggle with equations of just three variables.

My vision is to build an AI ecosystem with safety and robustness guarantees, encoding

physical knowledge and operational constraints into machine learning models through au-

24

tomated reasoning. Meanwhile, I aim to enable the discovery of knowledge and constraints

automatically from data, creating systems that are adaptive, reliable, and capable of ad-

dressing complex real-world challenges.

25

1. INTRODUCTION

1.1 Borad Overview

Structural data are ubiquitous in our daily lives. However, decision-making with models

learned from such data still remains a significant challenge when Machine Learning (ML) and

Automated Reasoning (AR) are applied in isolation. Learning without reasoning often fails

to generate output satisfying combinatorial constraints, while reasoning without learning

often yields rigid models, that lack flexibility to evolving environments. Integrating ML and

AR is essential but remains largely unsolved.

My research focuses on embedding automated reasoning into machine learning,

to tackle challenging problems in structured prediction and AI-driven scientific discovery. My

models are able to generate valid outputs satisfying complex combinatorial constraints, which

greatly surpasses pure learning-based approaches. Moreover, these models are adaptive to

evolving training data distributions, addressing the limitations of pure reasoning algorithms.

My learning algorithms offer tight theoretical guarantees and demonstrate great empirical

improvements in accuracy. Specifically, my contributions are:

Combining AR and ML to Ensure Constraint Satisfaction in Machine Learning

Machine
Learning

Automated
Reasoning

Integrated system

Constraint satisfaction
guarantees;

Learning with high accuracy.

For complex and structured problems that require adher-

ence to physical or operational constraints, state-of-the-

art ML models struggle to generate feasible outputs. This

challenge cannot be solved by simply improving training

algorithms, refining neural network architectures, or ex-

panding training datasets. Conversely, AR tools such as

Satisfiability (SAT) solvers and Satisfiability Modulo The-

ory (SMT) solvers lack flexibility in adapting to evolving

data distributions, making them inadequate for solving structured problems on their own.

My research attacks this gap by developing a line of strategies to embed constraint reason-

ing algorithms into machine learning for tasks with combinatorial constraints, which makes

great improvements over pure learning approaches. To summarize, I proposed to (a) Aug-

ment structured ML models with a constraint reasoning module that represents physical and

26

operational requirements, which is a general formulation to handle a wide list of constraints.

(b) Augment ML model with a constrained sampler subject to combinatorial logical con-

straints. This sampler can draw valid samples over hundreds of variables efficiently, greatly

surpassing current samplers. (c) Augment ML model with a Tree Search-enhanced sampler,

for language generation under grammar constraints. The proposed sampler can handle com-

binatorial hard (logical-valued) and soft (real-valued) constraints, whereas existing baselines

only work for simple hard constraints. Each part is explained in detail in the following

paragraphs.

Combining AR and ML to accelerate AI-driven Scientific Discovery Learning phys-

ical knowledge in closed-form equations from experimental data is vital in AI-driven scientific

discovery. State-of-the-art approaches are limited to learning relatively simple expressions

involving a few independent variables, struggling with multivariate expressions due to the

exponentially large search space of symbolic expressions.

My research attacks this gap by integrating scientific approach-inspired reasoning and

proposes an integrated system with (1) customized data acquisition, and (2) customized

symbolic regressor, that searches in the constrained space of equations. The developed

framework accelerates the discovery greatly over historical work with theoretical justification,

enabling them to handle datasets with up to 50 variables, a major leap from the previous

limit of fewer than 3 variables. The proposed framework is generalized to a wide list of

symbolic regressors, including genetic programming, Monte Carlo Tree Search, and Deep

Reinforcement Learning. The proposed framework is generalized to handle time-series data

where we use a customized data acquisition triple to acquire the data to accelerate the

discovery of dynamical systems.

The idea of combining machine learning models with sophisticated constraint reasoning

tools is highly motivated by the real-world problems across multiple domains. To give you a

clearer understanding and vision of the exact algorithms and tasks, the following paragraphs

describe the exact reasoning algorithms that we use, the concrete applications we can solve,

and the integrated learning framework we propose.

27

1.2 Brief Description of Each Chapter

Chapter 2: Embed Decision Diagram into Structured Prediction

In Chapter 2, we consider those real-world problems with structured outputs, which are

also known as structured prediction problems. These problems need machine learning to

capture data distribution and constraint reasoning to ensure the structure validity of the

predicted output. Nevertheless, constrained structured prediction is still limited in real-

world applications because of the lack of tools to bridge constraint satisfaction and machine

learning.

We propose, COnstraint REasoning embedded Structured Prediction (Core-Sp), a

scalable constraint reasoning and machine learning integrated approach for learning over

structured domains [1]. Specifically, we propose to embed decision diagrams, a popular

constraint reasoning tool, as a fully differentiable module into deep neural networks for

structured prediction. To trade off the memory consumption of the decision diagram with

the learning performance of the whole learning model, we also propose an iterative search

algorithm to automate the searching process of the best Core-Sp structure within the

memory budget.

In experiments, we evaluate Core-Sp on three applications: vehicle dispatching service

planning, if-then program synthesis, and text2SQL generation. The proposed CORE-SP

module demonstrates superior performance over state-of-the-art approaches in all three ap-

plications. The structures generated with Core-Sp satisfy 100% of the constraints when

using exact decision diagrams. In addition, Core-Sp boosts learning performance by re-

ducing the modeling space via constraint satisfaction.

Chapter 3: Learning Combinatorial Structures via Markov Random Fields with
Sampling through Lovász Local Lemma

Chapter 3 considers those applications where the output has combinatorial structures.

Learning to generate complex combinatorial structures satisfying constraints will have trans-

formative impacts in many application domains. However, it is beyond the capabilities of

existing approaches due to the highly intractable nature of the embedded probabilistic in-

28

ference. Prior works spend most of the training time learning to separate valid from invalid

structures but do not learn the inductive biases of valid structures.

-0.1 / 0.1

0.1 0.2 0.3
v1 v2 v3

-0.1 0.2 0.1
v1 v2 v3

v1 v3

Input

…

/ 0.2 0.3
v2 v3

Machine
Learning

Constraint
Reasoning

IF Alexa.alarm
THEN
 Hue.blink

SELECT *
 FROM …
 WHERE …

(2) If-then
program
synthesis:

(3) Text2SQL

s u1 u4

…

Input

ID NAME AGE

CORE-SP

(1) Vehicle
dispatch
planning

Neural
Network

Neural
Network

MDD MDD

s

u1 u2

u3 u4 u5

v2 v3

v1 v2v3 v1

v1

t
… …

Multi-valued
Decision DiagramCORE-SP

v1 v2

(a) Core-SP framework (b) Core-SP encodes MDD as a differentiable layer

We develop NEural Lovász Sampler (Nelson), which

embeds the sampler through Lovász Local Lemma (LLL)

as a fully differentiable neural network layer. Our Nel-

son-CD embeds this sampler into the contrastive diver-

gence learning process of Markov random fields. Nelson

allows us to obtain valid samples from the current model

distribution. Contrastive divergence is then applied to sep-

arate these samples from those in the training set. Nel-

son is implemented as a fully differentiable neural net, taking advantage of the parallelism

of GPUs. Experimental results on several real-world domains reveal that Nelson learns

to generate 100% valid structures, while baselines either time out or cannot ensure validity.

Nelson also outperforms other approaches in running time, log-likelihood, and MAP scores.

Chapter 4: Controllable Language Generation via Combinatorial Constraint Sat-
isfaction: A Tree Search Enhanced Monte-Carlo Approach

Chapter 4 explores a reasoning paradigm that generates human-like sentences subject to

grammar rules, with access to a large-scale language model. Generating human-like natural

language under combinatorial constraints is a principal milestone towards controllable text

generation.

1

2

4

3

Sentence edit space

Pr
ob

ab
ili

ty
 π

(x
)

Paris is located in France.
Paris is located in France.
Paris located in France.
Is Paris located in France?

: Deletion

TSMH
1

CGMH

2

4
3

Rejected

Accepted

Hard/soft constraints

Pretrained LM Sampling
Output
sentence

guide

NLG via Constraint Satisfaction

New input

Input-output
dataset

Supervised
training

Output
sentence

Supervised

(a)

(b)

Trained
neural net

We present a language generation framework with

combinatorial constraints, Tree Search enhanced Metropo-

lis Hastings approach (TSMH), allowing the specification

of grammar rules, keywords, and sentence attitude [2].

TSMH generates high-likelihood sentences with respect to

a pre-trained language model while satisfying the given

specifications that are required to satisfy. Our approach

is highly flexible, requires no task-specific training, and

leverages sophisticated constraint satisfaction techniques (i.e., Tree search) to enforce the

29

given constraints. To better handle the combinatorial constraints, a tree search algorithm is

embedded into the proposal process of the Markov chain Monte Carlo (MCMC) to explore

candidates that satisfy more constraints.

In experiments, our TSMH approach enjoys a much higher acceptance rate compared to

existing MCMC approaches. Further, the TSMH method achieves consistent and significant

improvement in language generation tasks, including generating interrogative, imperative

sentences with keywords, and sentences with given sentiments.

Chapter 5: Probabilistic Area Loss Minimization for Protein Sequence Align-
ment

Chapter 5 considers a specific structured prediction problem (i.e., pairwise sequence

alignment) where we can develop an efficient and simple reasoning algorithm (i.e., dynamic

programming) to sample valid outputs (i.e., a consecutive path) from the model’s distribu-

tion.

Pairwise sequence alignment is a fundamental problem in computational structural biol-

ogy and is popular for detecting protein homology. A valid alignment is a consecutive path

from the top-left corner to the bottom-right location in the 2D grids with the two protein

sequences being the axis. Given training data comparing a set of pairs of protein sequences

as well as its corresponding alignments, the learning task is to maximize the likelihood of

the ground-truth alignment for every pair of sequences.

The main difficulty we are facing with this application is the dataset itself is noisy. Since

most of the developed programs for detecting protein sequence alignments are based on the

likelihood information of amino acids and are sensitive to alignment noises in the dataset.

We present, Probabilistic Area Loss Minimization (PALM), a robust method for mod-

eling pairwise protein sequence alignments, with the proposed area distance to reduce the

biological measurement noise [3]. PALM learns the alignment of two protein sequences with

probabilistic area distance objective, which can denoise the measurement errors and offsets

from different biologists. During learning, PALM optimizes the learning objective by esti-

mating the gradients via sampling valid alignments from the model’s probability distribution.

30

We show the alignment sampling procedure can be laid out as dynamic programming which

is computationally efficient.

Empirically, we show that PALM can generate sequence alignments with higher Precision

and Recall, as well as F1-score than the competing methods, especially for long protein

sequences and remote homologies. This study implies PALM can learn robustly over large-

scale protein sequence alignment problems.

Chapter 6: Symbolic Regression via Control Variable Genetic Programming

Learning symbolic expressions directly from experiment data is a vital step in AI-driven

scientific discovery. Nevertheless, state-of-the-art approaches are limited to learning simple

expressions. Regressing expressions involving many independent variables still remain out

of reach.

(4
) n

o
co

nt
ro

l

× ×

x1 x3 x2 x4

−

Controlled Experiment Data
(1

) c
on

tro
l ￼x

2,
x 3

,x
4 Best Expression Tree

×

x1

−

C1

C2
0.3 0.5 0.1 0.7 -0.32
0.6 0.5 0.1 0.7 -0.29
0.2 0.5 0.1 0.7 -0.33
0.9 0.5 0.1 0.7 -0.26

￼ x1 ￼ x2 ￼ x3 ￼ y￼ x4

×

x1

−

C1 C2

×

x2

C1

× ×

x1 x3 x2

−

0.6 0.1 0.8 0.4 0.44
0.4 0.9 0.8 0.4 0.04
0.3 0.2 0.8 0.4 0.16
0.7 0.4 0.8 0.4 0.40

￼ x1 ￼ x2 ￼ x3 ￼ y￼ x4

0.7 0.8 0.1 0.2 -0.09
0.5 0.4 0.6 0.2 0.22
0.2 0.1 0.9 0.2 0.16
0.3 0.5 0.1 0.2 -0.07

￼ x1 ￼ x2 ￼ x3 ￼ y￼ x4

0.2 0.4 0.2 0.7 -0.24
0.9 0.3 0.5 0.5 0.30
0.5 0.4 0.8 0.1 0.36
0.1 0.8 0.7 0.6 -0.41

￼ x1 ￼ x2 ￼ x3 ￼ y￼ x4

(3
) c

on
tro

l ￼ x
4

(2
) c

on
tro

l ￼ x
3,

x 4
Motivated by the control variable experiments

widely utilized in science, we propose Control Vari-

able Genetic Programming (CVGP) for symbolic re-

gression over many independent variables. CVGP ex-

pedites symbolic expression discovery via customized

experiment design, rather than learning from a fixed

dataset collected a priori. CVGP starts by fitting

simple expressions involving a small set of indepen-

dent variables using genetic programming, under con-

trolled experiments where other variables are held as

constants. It then extends expressions learned in pre-

vious generations by adding new independent vari-

ables, using new control variable experiments in which

these variables are allowed to vary.

Theoretically, we show CVGP as an incremental building approach can yield an expo-

nential reduction in the search space when learning a class of expressions. Experimentally,

31

CVGP outperforms several baselines in learning symbolic expressions involving multiple in-

dependent variables.

Chapter 7: Racing Control Variable Genetic Programming for Symbolic Regres-
sion

10−3 10−2 10−1 100

Normalized Mean Square Error

π1
π2
π3
π4
π5
π6
π7
π8
π9
π10
π11
π12
π13
π14
π15
π16
π17
π18
π19
π20
π21
π22
π23
π24

E
xp

er
im

en
tS

ch
ed

ul
es

default schedule⇒
⇐best alternative schedule

Symbolic regression, as one of the most crucial tasks in

AI for science, discovers governing equations from exper-

imental data. Popular approaches based on genetic pro-

gramming, Monte Carlo tree search, or deep reinforcement

learning learn symbolic regression from a fixed dataset.

These methods require massive datasets and long training

time especially when learning complex equations involving

many variables. Recently, Control Variable Genetic Pro-

gramming (CVGP) has been introduced which accelerates

the regression process by discovering equations from designed control variable experiments.

However, the set of experiments is fixed a-priori in CVGP and we observe that sub-optimal

selection of experiment schedules delay the discovery process significantly.

To overcome this limitation, we propose Racing Control Variable Genetic Programming

(Racing-CVGP), which carries out multiple experiment schedules simultaneously. A selection

scheme similar to that used in selecting good symbolic equations in genetic programming is

implemented to ensure that promising experiment schedules eventually win over the average

ones. The unfavorable schedules are terminated early to save time for the promising ones.

We evaluate Racing-CVGP on several synthetic and real-world datasets corresponding

to true physics laws. We demonstrate that Racing-CVGP outperforms CVGP and a series

of symbolic regressors which discover equations from fixed datasets.

Chapter 8: Vertical Symbolic Regression using Deep Policy Gradient

Vertical Symbolic Regression (VSR) has recently been proposed to expedite the discovery

of symbolic equations with many independent variables from experimental data. VSR re-

32

duces the search spaces following the vertical discovery path by building from reduced-form

equations involving a subset of variables to all variables. While deep neural networks have

shown promise in enhancing symbolic regression, directly integrating VSR with deep net-

works faces challenges such as gradient propagation and engineering complexities due to the

tree representation of expressions. We propose Vertical Symbolic Regression using Deep

Policy Gradient (VSR-DPG) and demonstrate that VSR-DPG can recover ground-truth

equations involving multiple input variables, significantly beyond both deep reinforcement

learning-based approaches and previous VSR variants. Our VSR-DPG models symbolic re-

gression as a sequential decision-making process, in which equations are built from repeated

applications of grammar rules. The integrated deep model is trained to maximize a policy

gradient objective.

Experimental results demonstrate that our VSR-DPG significantly outperforms popular

baselines in identifying both algebraic equations and ordinary differential equations on a

series of benchmarks.

Chapter 9: Active Symbolic Discovery of Ordinary Differential Equations via
Phase Portrait Sketching

The symbolic discovery of Ordinary Differential Equations (ODEs) from trajectory data

plays a pivotal role in AI-driven scientific discovery. Existing symbolic methods predomi-

nantly rely on fixed, pre-collected training datasets, which often result in suboptimal per-

formance, as demonstrated in our case study in Figure 9.1. Drawing inspiration from active

learning, we investigate strategies to query informative trajectory data that can enhance the

evaluation of predicted ODEs. However, the butterfly effect in dynamical systems reveals

that small variations in initial conditions can lead to drastically different trajectories, neces-

sitating the storage of vast quantities of trajectory data using conventional active learning.

To address this, we introduce Active Symbolic Discovery of Ordinary Differential Equa-

tions via Phase Portrait Sketching (APPS). Instead of directly selecting individual initial

conditions, our APPS first identifies an informative region within the phase space and then

samples a batch of initial conditions from this region. Compared to traditional active learn-

ing methods, APPS mitigates the gap of maintaining a large amount of data. Extensive

33

Table 1.1. Summary of all the reasoning tools and applications in this thesis.
Reasoning tools

Decision LLL-based MCMC with Dynamic
Applications Diagram Constrained Sampler Tree Search Programming

Controllable Chapter 4Text Generation

Generate Pairwise Chapter 5Sequence Alignment

Vehicle Dispatching Chapter 2 Chapter 3Service Planning

if-then program Chapter 2synthesis

text2SQL generation Chapter 2

Random solutions for Chapter 3
K satisfiability

Sink-free graph orientation Chapter 3

Reasoning tools
Evaluation Control Racing Phase Portrait

Datasets Variable Experiment Experiment Design Sketching

Multivariate expression dataset Chapters 6, 7,8 Chapters 6, 7,8
Feynman dataset Chapters 6, 7,8 Chapters 6, 7,8
SrBench dataset Chapters 6, 7,8 Chapters 6, 7,8

ODEBase dataset Chapters 6, 7,8 Chapter 8 Chapter 9

experiments demonstrate that APPS consistently discovers more accurate ODE expressions

than baseline methods using passively collected datasets.

1.3 Summary

This thesis introduces a novel and important computational framework based on di-

verse strategies of embedding sophisticated constraint reasoning tools with machine learning

models, to solve complex real-world applications. My research was mainly motivated by

those important problems across multiple scientific domains and wide collaboration with

researchers in the areas of operational research, computational sustainability, and combi-

34

natorics. Part of the results in this preliminary report has been published in the following

peer-reviewed publications:

• Nan Jiang, Md. Nasim, and Yexiang Xue. Active symbolic discovery of ordinary

differential equations via phase portrait sketching. In Thirty-Ninth AAAI Conference

on Artificial Intelligence (AAAI), 2025.

• Nan Jiang∗, Md Nasim, and Yexiang Xue. Vertical symbolic regression via deep

policy gradient. In Proceedings of the Thirty-Third International Joint Conference on

Artificial Intelligence (IJCAI), pages 5891-5899, 8 2024.

• Jinzhao Li, Nan Jiang, and Yexiang Xue. Solving satisfiability modulo counting

for symbolic and statistical ai integration with provable guarantees. In Thirty-Eighth

AAAI Conference on Artificial Intelligence (AAAI), pages 20481-20490, 2024.

• Nan Jiang and Yexiang Xue. Racing control variable genetic programming for sym-

bolic regression. In Thirty- Eighth AAAI Conference on Artificial Intelligence (AAAI),

pages 12901-12909, 2024.

• Nan Jiang, Jinzhao Li, and Yexiang Xue. A tighter convergence proof of reverse

experience replay. Reinforcement Learning Journal, 1:470-480, 2024.

• Md. Nasim, Nan Jiang, Yexiang Xue. Computational Approaches to Scientific Dis-

covery. Lecture Notes in Computer Science. Springer, 2024. Book Chapter.

• Nan Jiang and Yexiang Xue. Symbolic regression via control variable genetic pro-

gramming. In Machine Learning and Knowledge Discovery in Databases: Research

Track - European Conference (ECML/PKDD), volume 14172, pages 178-195, 2023.

• Nan Jiang∗, Yi Gu∗, and Yexiang Xue. Learning Markov random fields for combi-

natorial structures via sampling through lovász local lemma. In Thirty-Seventh AAAI

Conference on Artificial Intelligence (AAAI), pages 4016-4024, 2023.

• Maxwell J. Jacobson, Case Q. Wright, Nan Jiang, Gustavo Rodriguez-Rivera, and

Yexiang Xue. Task detection in continual learning via familiarity autoencoders. In

35

Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics

(SMC), pages 1-8, 2022.

• Nan Jiang, Chen Luo, Vihan Lakshman, Yesh Dattatreya, and Yexiang Xue. Massive

text normalization via an efficient randomized algorithm. In The ACM Web Conference

(WWW), pages 2946-2956, 2022.

• Nan Jiang, Maosen Zhang, Willem-Jan van Hoeve, and Yexiang Xue. Constraint

reasoning embedded structured prediction. Journal of Machine Learning Research,

23:345:1-345:40, 2022.

• Nan Jiang∗, Fan Ding∗, Jianzhu Ma, Jian Peng, Jinbo Xu, and Yexiang Xue. PALM:

probabilistic area loss minimization for protein sequence alignment. In Proceedings of

the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI), volume

161, pages 1100-1109, 2021.

• Libin Shi, Wenge Rong, Shijie Zhou, Nan Jiang, and Zhang Xiong. A dual chan-

nel class hierarchy-based recurrent language modeling. Neurocomputing, 418:291-299,

2020.

• Maosen Zhang, Nan Jiang, Lei Li, and Yexiang Xue. Constraint satisfaction driven

natural language generation: A tree search embedded MCMC approach. In Findings

of the Association for Computational Linguistics: (EMNLP), pages 1286-1298, 2020.

36

2. Constraint Reasoning Embedded Structured Prediction

2.1 Introduction

The emergence of large-scale constraint reasoning and machine learning technologies

have impacted virtually all application domains, including marketing, linguistics, operations,

retail, robotics, and health care. Constraint reasoning has traditionally been applied to

building prescriptive models that generate solutions for strategic, tactical, or operational

use [4]. It requires a precise problem description and is usually difficult to be made flexible

to the evolving data distributions. Machine learning, on the other hand, has been applied

primarily to build predictive models, such as classifications or regressions [5, 6]. While the

structure of a machine learning model (like a neural net) must be designed, the actual model

parameters are learned automatically via gradient descent algorithms. This gives machine

learning models the flexibility to adapt to the evolving data distributions. Nevertheless, it is

difficult to enforce constraints on the output of machine learning models. Many real-world

applications are beyond the reach of constraint reasoning or machine learning alone.

In this chapter, we focus on structured prediction problems, which is a class of learning

problems requiring both constraint reasoning and machine learning. It expands the output

space of classification problems into high-dimensional structured space. Structured predic-

tion has diverse application domains, ranging from natural language processing [7], social

network analysis [8], and ecological modeling [9, 10]. The applications we consider in this

chapter all require tight integration of constraint reasoning and machine learning. Our first

application vehicle dispatching service planning is to recommend a route that satisfies the

daily service needs as well as meeting the drivers’ preferences. Historical data may reveal

that the drivers do not follow common stylized objectives such as minimizing distance or

time. Therefore standard constraint reasoning tools, e.g., solvers for the traveling salesman

problem, cannot be applied. While we need machine learning to capture the drivers’ objec-

tive functions, pure machine learning-based approaches are insufficient because they often

generate routes that violate delivery requests. Our second and third applications are pro-

gram synthesis from natural language, which clearly require machine learning to generate

37

-0.1 / 0.1

0.1 0.2 0.3

v1 v2 v3
-0.1 0.2 0.1

v1 v2 v3

v1 v3

Input

…

/ 0.2 0.3
v2 v3

Machine
Learning

Constraint
Reasoning

IF Alexa.alarm
THEN
 Hue.blink

SELECT *
 FROM …
 WHERE …

(2) If-then
program
synthesis:

(3) Text2SQL

s u1 u4

…

Input

ID NAME AGE

CORE-SP

(1) Vehicle
dispatch
planning

Neural
Network

Neural
Network

MDD MDD

s

u1 u2

u3 u4 u5

v2 v3

v1 v2v3 v1

v1

t
… …

Multi-valued
Decision DiagramCORE-SP

v1 v2

(a) Core-SP framework (b) Core-SP encodes MDD as a differentiable layer

Figure 2.1. (a) Our proposed Core-Sp framework embeds constraint rea-
soning in machine learning for structured prediction. We demonstrate the
effectiveness of Core-Sp on vehicle dispatching service, if-then program syn-
thesis, and Text2SQL generation tasks. (b) At a high level, Core-Sp (in
orange colored box) is a fully differentiable layer that simulates a path de-
scending in the corresponding decision diagram. Core-Sp filters out the in-
feasible output from the structured output to ensure constraint satisfaction.

structured programs. Nevertheless, a pure learning approach cannot enforce the syntactic

and semantic rules of those programs.

We propose Constraint Reasoning embedded Structured Prediction (Core-Sp), a scal-

able constraint reasoning and machine learning integrated approach for learning over the

structured domains. The main idea is to augment structured predictive models with a con-

straint reasoning module that represents physical and operational requirements. Specifically,

we propose to embed decision diagrams [11, 12], a popular constraint reasoning tool, as a

fully-differentiable module into deep neural networks. A decision diagram is a compact

graphical representation of the constraints. It encodes each solution (an assignment of val-

ues to variables satisfying the constraints) as a path from the root to the terminal in the

diagram. Core-Sp regards the neural network predictions as the simulation of descending

along a path in the decision diagram. To ensure constraint satisfaction, Core-Sp filters out

variable assignments from the neural network predictions that violate constraints. With the

38

integration of Core-Sp, we provide structured prediction models with constraint satisfaction

assurances. Moreover, structured prediction models with the Core-Sp layer enjoy a smaller

prediction space than traditional structured prediction approaches, allowing our approach to

learn faster in training and generalize better in testing. See Figure 2.1(a) for our proposed

Core-Sp model which integrates constraint reasoning and machine learning for the three

application domains. The high-level idea of Core-Sp is illustrated in Figure 2.1(b).

Previous approaches have considered regularizing machine learning with constraint rea-

soning in various application domains. Within the broader context of learning constrained

models, the work of [13–17] have studied automating the constraint acquisition process from

historic data or (user-)generated queries. These approaches use partial or complete examples

to identify the constraints that can be added to the model. The type of constraints that

can be learned depends on the formulation. Several works [18–21] enable learning in a con-

strained domain via encoding mathematical programming, such as quadratic programming

or mixed integer linear programming, as a neural network layer. [22] propose to formu-

late the output space as an automata. They use the constraints to prune all the invalid

transitions in the automata to ensure the validity of the structured outputs. In addition,

constraints imposed by a knowledge graph have been embedded into the neural network as

differentiable layers [23, 24]. [25] and [26] enforce physical constraints or expert inputs as

soft constraints. We will illustrate the difference between our approach and these methods in

Section 2.3.2. A different approach is to embed a machine learning model into optimization,

e.g., by extending a constraint system with appropriate global constraints. For example, [27]

integrate neural networks and decision trees with constraint programming, while [28] and

[29] introduce a “Neuron” global constraint that represents a pre-trained neural network.

Another series of approaches based on grammar variational autoencoders [30–32] use neural

networks to encode and decode from the parse-tree of a context-free grammar to generate

discrete structures. Such approaches are used to generate chemical molecule expressions,

which represent a structured domain. Machine learning approaches have also been used

to solve constraint reasoning and optimization problems. This includes the works of [33]

and [34], which use neural networks to extend partial solutions to complete ones. [35] han-

dles the traveling salesman problem by framing it as reinforcement learning. [36] proposes

39

to learn an SAT solver from single-bit supervision. Approaches based on neural Turing ma-

chines [37] employ neural networks with external memory for discrete structure generation.

More recently, [38] tackles the combinatorial optimization problems in graphs, by employing

neural networks to learn the heuristics in the backtrack-free search. There is also a recent

trend to synthesize programs using machine learning [39, 40].

In experimental analysis, we demonstrate the effectiveness of Core-Sp on the following

three applications: (1) Vehicle Dispatching Service Planning: a route planning problem that

recommends routes to drivers to meet the service needs while satisfying the drivers’ prefer-

ences. The implicit preferences of drivers are learned from the historical traveling data. The

input of this problem is the daily service requests. The output is the permutations of the

service locations, representing the sequential order that the locations should be visited by

the drivers. This task requires machine learning models to capture drivers’ preferences from

the traveling data, and constraint reasoning to ensure the satisfaction of service requests. (2)

If-then Program Synthesis: the task is to automatically synthesize conditional programs from

the natural language. Automatic program synthesis tools are useful for streamlining the pro-

gram of a few online services such as IFTTT and Zapier. The if-then program is in the form

of: if trigger function happens in the trigger service, then take the action function

from the action service. The machine learning task, therefore, is to predict the quadruple

(trigger service, trigger function, action service, action function). This appli-

cation again requires machine learning to understand the semantics of the natural language,

as well as constraint reasoning to satisfy the syntactic rules of the programs. (3) Text2SQL

Generation: our last application is to automatically generate SQL queries that extract infor-

mation from a database to answer a question posed in natural language. The neural model

is used to understand the user’s queries in natural language while the constraint reasoning

tool is applied to ensure the model generates grammatically-valid SQL queries.

Our proposed Core-Sp framework demonstrates superior performance against the state-

of-the-art approaches in all three applications. First, the structures generated by Core-Sp

are better in constraint satisfaction. In vehicle service dispatching, all Core-Sp generated

routes are valid, while a conditional generative adversarial network (cGAN) without Core-

Sp generates on average less than 1% of valid routes when handling medium-sized delivery

40

requests. We also apply a post-processing step [41] to boost cGAN’s performance, but it

cannot handle the complexity brought by the large combinatorial space of the routing prob-

lem. Its performance quickly defaults to the case without post-processing as the number

of delivery locations increases. For if-then program synthesis, the percentage of valid pro-

grams produced increased from 88% to 100% with the Core-Sp module incorporated into

the state-of-the-art LatentAttention model [42]. For Text2SQL, the percentage of valid SQL

queries increased from 83.7% to 100% with Core-Sp incorporated into the state-of-the-art

SQLNova model [43] on a hard testing set. Core-Sp also improves the learning perfor-

mance of structured prediction models. We show that the routes generated by Core-Sp

better fulfill drivers’ preferences than cGAN without Core-Sp. In if-then program synthe-

sis, Core-Sp module leads to approximately 2.0% improvement in accuracy compared with

the state-of-the-art LatentAttention model and converges to models with higher accuracy

in fewer training epochs. In Text2SQL generation, the Core-Sp module improves around

4.2% in execution accuracy and 1.9% in logical accuracy against SQLNova on a challenging

test set.

2.2 Preliminaries

2.2.1 Structured Prediction

Structured prediction expands the output space of classification problems into a high-

dimensional combinatorial space. Specifically, given a set of input-output samples Dtr =

{(x(i), y(i))}N
i=1 drawn i.i.d. from some unknown distribution over the space X×Y , a structure

prediction model learns a conditional distribution pθ(y|x), for all (x, y) ∈ X × Y from data

Dtr. Note here the output space Y = {0, 1}l is a high dimensional space of combinatorial

structures. The three applications we consider in this chapter are all structured prediction

problems. In vehicle dispatching service planning, the structured outputs are the delivery

routes on a map. In if-then program synthesis, the structured outputs are the programs that

complete web-service tasks. In Text2SQL generation, the structured outputs are the SQL

queries that follow the SQL grammar.

41

In literature, various approaches have been proposed for structured prediction problems.

The classifier chain approach [44] decomposes the joint likelihood into a product of con-

ditionals and reduces the structured prediction problem into a series of binary prediction

problems. Nevertheless, the error tends to propagate along the classifier chain, which limits

their effectiveness [45]. Energy-based modeling, such as conditional random fields [46, 47] and

structured prediction energy networks [48], learn to assign a high likelihood to structures

that exist in the training data set while keeping the likelihood low for unseen structures.

Constraints can be incorporated into these models as prior terms in the energy function

but approximate inference is required to compute the intractable partition function, which

often hinders their scalability. Another line of approaches are structured support vector ma-

chines [49], which uses hinge loss and row generation approaches for structured prediction;

however, they were superseded in performance by later neural-network-based approaches.

Recently, generative models, such as conditional generative advarsarial networks [50, 51],

flow models [52], and sequence-to-sequence models [53] have become increasingly popular for

structured prediction. These models use highly flexible neural networks to increase model

capability. The over-parameterized networks with gradient descent-based optimization can

learn better representation for the structures than the classic shallow models. However, it is

not straightforward to enforce constraints into the neural network-based models.

Constraints in Structured Prediction Often the structured output space Y is subject

to additional constraints C. The conditional probability that y takes values which violate

the physical constraints C given the input x is zero. Such information is known prior to the

training of the machine learning model. Put it in mathematical language:

pθ(y|x)


> 0 if y satisfies constraints C,

= 0 if y violates constraints C.
(2.1)

Take the first task discussed in this chapter as an example. A valid delivery route should

cover all the requested locations and should only visit each location once. Thus, the ma-

chine learning model should assign zero probability for those invalid routes. Notice that the

constraints are often intricate and the inference problem of finding a valid structure satis-

42

fying constraints cannot be decomposed into independent small problems. After learning,

the inference problem is to predict the structure output y given the input x. Such inference

problems can be solved by either Maximum A Posteriori (MAP) inference, e.g., computing

maxy p(y|x) or marginal inference, e.g., computing Ey[p(y|x)]. Learning structured predic-

tion models involves solving the inference problems within the learning loop, hence has an

even higher complexity.

Combinatorial constraints render both the inference and the learning problems highly

intractable. Indeed, much effort has been made to improve the efficiency of both the infer-

ence and learning problems ([54, 55]). For example, [56] proposes the sparseMAP function

which solves the inference problem by returning a few sparse structures that attain high like-

lihoods. This inference method sits between the MAP and marginal inference. sparseMAP

can be solved via quadratic programming in their problem setup. However, combinatorial

constraints considered in this chapter renders the inference problem non-convex, even for

a fixed structured prediction model, letting along the more challenging learning problem.

Overall, constrained structured prediction presents two main challenges. The first is the

sample complexity, since massive data is needed to learn an accurate model in an exponen-

tially large space. The second is the computational complexity, since it is combinatorially

intractable to generate outputs with structured outputs subject to complicated constraints.

Sequence-to-sequence Structured Prediction Sequence-to-sequence models are recently

proposed popular structured prediction models. Our proposed Core-Sp builds on top of

these models. The sequence-to-sequence model uses the re-parameterization trick to model

the conditional probability pθ(y|x), where x ∈ X denotes the input variables and y ∈ Y is

the structured output. Here θ denotes the parameters of the neural models. Instead of mod-

eling the probability pθ(y|x) directly, the model introduces an additional random variable z

and models it as a deterministic transformation from random variable z and evidence x to

the output y. In other words, the conditional probability pθ(y|x) is an integral over random

variable z in the following way:

pθ(y|x) =
∫

pθ(y|x, z)p(z) dz,

pθ(y|x, z) = 1{y = fθ(x, z)},
(2.2)

43

where we assume z is from a known prior probability distribution p(z). As a result, we only

need to model pθ(y|x, z) for the overall model pθ(y|x). We further assume that pθ(y|x, z) is

given in the form of a deterministic function. Let fθ(x, z) ∈ Y be a deterministic mapping

from inputs (x, z) to an output in the structured space Y . The indicator function 1{·}

evaluates to 1 if and only if y = fθ(x, z). This formulation is closely related to the generative

adversarial network and gives us high flexibility to model multi-modal distributions. Take

the vehicle dispatching service planning as an example. Input x is the daily vehicle request

and y is the suggested dispatching route. There can be several routes which meet the delivery

demands as well as satisfying the driver’s underlying preference function. In this case, the

conditional probability pθ(y|x) may have multiple modes, one for each good route. This

formulation allows us to represent the multi-modal distribution effectively. The variable z

decides which route to pick. Function fθ(x, z) returns one route that meets the demand of

input x and is randomly selected by z. If pθ(y|x) has k modes, the space of z will be split

into k regions where variable z in every region will be mapped to one mode in pθ(y|x).

A sequence-to-sequence neural network is used to model the function fθ(x, z). Assume

the input variables x, z, and the output y are all represented in sequential forms x =

(x1, x2, . . . , xT), z = (z1, z2, . . . , zT) and y = (y1, y2, . . . , yT). The sequence-to-sequence

model is made of an encoder and a decoder. The sequential encoder takes in x and output a

representation vector for input x. The sequential decoder takes in the output of the encoder

as well as z and outputs y in T steps, where T refers as the maximum length for variable y.

In the k-th step (1 ≤ k ≤ T), the decoder network takes zk, and the hidden vector from the

previous step hk−1 as inputs, and outputs a score vector ok = (ok1, ok2, . . . , okDk
) of length

Dk = |D(yk)|. Here, ok corresponds to the un-normalized likelihoods of each value that

variable yk can take. The softmax function is then applied to get the normalized probability:

pkj = p (yk = vj|x, hk−1) = exp(okj)∑Dk
j′=1 exp(okj′)

, for j = 1, 2, . . . , Dk.

pkj is the probability that variable yk takes the j-th value vj. Assume the prior distribution

p(zk) is uniform distribution in (0, 1), noted as U(0, 1). Variable zk is sampled from (0, 1)

uniformly at random and is used to determine the value for yk according to the probability

44

distribution vector pk = (pk1, pk2, . . . , pkDk
). Let Pk1, Pk2, . . . , Pk(Dk+1) be the cumulative

probabilities:

Pkj =



0 for j = 1,∑j−1
j′=1 pkj′ for j = 2, 3, . . . , Dk,

1 for j = Dk + 1.

yk is set to the value vj if and only if zk ∈
[
Pkj, Pk(j+1)

)
. Notice that zk is sampled from the

uniform distribution between (0, 1), the probability that yk takes the j-th value vj is exactly

pkj. Aside from producing the value for yk in the k-th step, the sequence-to-sequence neural

net also produces the hidden-state vector hk at the k-th step, which is used by the neural net

again in the subsequent (k +1)-th step. The overall architecture of the sequence-to-sequence

model can be seen in Figure 2.4.

The training process of the sequence-to-sequence model is to minimize a pre-defined

loss function, or an additional discriminator neural net, which penalizes the differences of

the predicted structure fθ(x, z) and the observed structure y. Here fθ(x, z) is a predicted

sequence obtained from the above process. Given a training dataset Dtr = {(x(i), y(i))}N
i=1,

the learning objective is to minimize the loss function:

L(θ) = 1
N

N∑
i=1

Ez(i)`
(
fθ

(
x(i), z(i)

)
, y(i)

)
. (2.3)

Here `(·, ·) can be a predefined loss function that measures the mismatch between the pre-

dicted and observed structures. `(·, ·) can also be represented as a discriminator network,

in which case leads to the training of a generative adversarial network. The parameters θ is

updated via gradient descent: θt+1 = θt − η∇L(θ), where η denotes the learning rate.

2.2.2 Decision Diagrams

Decision diagrams were originally introduced to compactly represent the Boolean func-

tions in a graphical form [11, 12]. Since then, they have been widely used in the context of

verification and configuration problems [57]. More recently, they have been used successfully

45

x1

x2

x3

s

u1 u2

u3 u4 u5

t

v2 v3

v1 v3 v2 v1

v3 v1 v2

s

u1

u2

t

v2 v3

v1 v2 v3

v1 v2 v3

s

u1 u2

u3 u4

t

v2 v3

v1 v3 v2 v1

v3
v1

v2

(a) Exact MDD (b) width-1 relaxed MDD (c) width-2 relaxed MDD

Figure 2.2. Illustration of Multi-valued Decision Diagrams (MDDs) for de-
cision variables x1, x2, x3. (a) an exact MDD with all variable assignments
satisfying two constraints: all-diff(x1, x2, x3) and x1 6= v1; (b) A width-1
relaxed MDD for the exact MDD in (a); (c) A width-2 relaxed MDD, which
is formed by combining nodes u4 and u5 of the MDD in (a).

as an optimization tool, by representing the set of solutions to combinatorial optimization

problems [58, 59].

Specifically, decision diagrams are defined with a sequence of decision variables x1, . . . , xn.

Variable xi has a domain of possible values D(xi), for i = 1, 2, . . . , n. We first introduce the

notion of a decision diagram with the fixed variable ordering x1, . . . , xn. A decision diagram

is a directed acyclic graph, with n + 1 layers of nodes. Layer 1 contains a single node s,

called the root. Layer n + 1 also contains a single node t, called the terminal. An arc from

a node in layer i to a node in layer i + 1 represents a possible assignment of variable xi to

a value in its domain and is therefore associated with a label in D(xi). For an arc e(v, u),

we use val(v, u) ∈ D(xi) to represent the assigned label for variable xi. For a node v in

layer i, we use val(v) ⊆ D(xi) to represent the union of the values of each arc starting from

node v, i.e., val(v) = val(v, u) ∪ val(v, u′) ∪ · · · . In other words, val(v) represents the

possible value assignments for the decision variable xi, at node v. Each path from the root s

to the terminal t represents a solution, i.e., a complete variable assignment. in this chapter,

we consider variables with domains of categorical values, which is the so-called multi-valued

decision diagrams (MDDs) [60]. See Figure 2.2 for an example.

46

x1

x2

x3

s

u1

u2

t

v2 v3

v1 v2 v3

v1 v2 v3

s

û1 ũ1

u2

t

v2 v3

v3
v2

v1

v1
v2

v3

v1 v2 v3

s

û1 ũ1

u2

t

v2 v3

v3
v2

v1

v1
v2

v3

v1 v2 v3

s

û1 ũ1

u2

t

v2 v3

v3

v1

v1
v2

v1 v2 v3

(a) width-1 MDD (b) split node (c) filter edges (d) width-2 MDD

Figure 2.3. Node splitting and arc filtering for MDDs for variables x1, x2, x3.
(a) A width-1 relaxed MDD as in Figure 2.2(b). (b) Split node u1 into û1
and ũ1. (c) Filter arcs e(û1, u2) = v2, e(ũ1, u2) = v3 that violate the constraint
all-diff(x1, x2, x3). The arcs in dashed lines are removed. (d) A width-2
relaxed MDD after one iteration of node splitting and arc filtering.

Exact Decision Diagrams. Given a set of constraints C, the MDD M is said to be exact

with respect to C if and only if every path that leads from the root node s to the terminal

node t in M is a variable assignment satisfying all constraints in C. Conversely, every valid

variable assignment can be found as a path from s to t in M.

Relaxed Decision Diagrams. Since the exact decision diagrams can grow exponentially

large, the relaxed decision diagrams are later proposed to limit the size the of MDDs [61]. The

set of paths in a relaxed decision diagram forms a superset of the paths in the exact decision

diagram. Relaxed MDDs are often defined with respect to the maximum layer width, which

is the number of nodes in its largest layer.

Ordering in Decision Diagrams. Let π = (π1, π2, . . . , πn) be a permutation of the index

set {1, 2, . . . , n}. A MDD is said to have variable ordering π if it expands the value assignment

of variable xπi
in the i-th step, i.e., the arcs leading from layer i to layer i + 1 are labeled

with values assigned to variable xπi
. Variable ordering is an important factor to optimize in

MDD compilation, due to its impact on the memory consumption of the MDD [62].

Example 2.2.1. Figure 2.2 demonstrates several MDDs. Let x1, x2, x3 be a sequence of

decision variables with domain D(x1) = D(x2) = D(x3) = {v1, v2, v3}. The constraint

all-diff(x1, x2, x3) restricts the values of x1, x2 and x3 to be all different, i.e., they form

47

a permutation. The other constraint is x1 6= v1. (1) Exact MDD. The set of feasible

permutations is {(v2, v1, v3), (v2, v3, v1), (v3, v2, v1), (v3, v1, v2)}. Figure 2.2(a) depicts the

exact MDD that encodes all permutations satisfying the two constraints. (2) Relaxed MDD.

Figure 2.2(b) is a width-1 relaxed MDD and Figure 2.2(c) is a width-2 relaxed MDD. The

set of paths in the relaxed MDD forms a superset of all feasible permutations. To illustrate,

Figure 2.2(c) contains two infeasible solutions {(v3, v1, v1), (v2, v2, v2)}. (3) Variable ordering.

All the MDDs in Figure 2.2 have the same variable ordering of π = (1, 2, 3), meaning that

the MDD first expands on variable x1, then x2, finally x3.

Decision Diagram Compilation. Decision diagrams can be compiled via a repeated

process of node splitting and arc filtering from a width-1 relaxed MDD [61, 63]. Arc filtering

removes arcs that lead to infeasible solutions, while node splitting increases the size of the

decision diagram by splitting one node into two or more nodes. In practice, one can reach an

exact MDD by repeatedly going through the splitting and filtering processes from a width-1

MDD. We refer to [60] for the detailed process of MDD compilation.

Example 2.2.2. Figure 2.3 demonstrates one possible process of applying the node split-

ting and arc filtering steps. We re-use the example in Figure 2.2(b) as the initial MDD in

Figure 2.3(a), which depicts a width-1 relaxed MDD before compilation. The constraint

to be applied is all-diff(x1, x2, x3), that the assignments of variables x1, x2, x3 should be

different. The node u1 in Figure 2.3(a) is split into two nodes û1, ũ1 in Figure 2.3(b). The

incoming arc e(s, u1) = v2 is assigned to node û1 and the other incoming arc e(s, u1) = v3

is assigned to node ũ1. The outgoing arcs of node u1 are copied for the two nodes. In Fig-

ure 2.3(c), the arc filtering process checks if certain variable assignments violate constraints

for the two nodes. Arc e(û1, u2) = v2 is not compatible with the previous arc e(s, û1) = v2

because they violate all-diff(x1, x2, x3). Thus it is removed. For the same reason, arc

e(ũ1, u2) = v3 is also removed. (d) We get a width-2 relaxed MDD after splitting node u1

and filtering the arcs.

48

Input

(b) a path in MDD

Score
vector

Softmax

Output

s

u1 u2

u3 u4 u5

v2 v3

v1 v2v3 v1

v1

t
v3 v2

(a) sequence-to-sequence model

0.1 0.2 0.3
v1 v2 v3

0.3 0.33 0.37
v1 v2 v3

h0

z1 = 0.4
y1 = v2

-0.1 0.2 0.1
v1 v2 v3

x1, x2, …, xT

0.28 0.38 0.34
v1 v2 v3

h1

z2 = 0.8
y2 = v3

-1 0 1
v1 v2 v3

0.1 0.24 0.66
v1 v2 v3

z3 = 0.2
y3 = v1

h2 h3

o1 o2 o3

Sequential Encoder

RNNRNNRNN
Sequential
decoder

Figure 2.4. Illustration of (a) a sequence-to-sequence model which generates
an output corresponding to (b) a path in the multi-valued decision diagram.
(a) a sequence-to-sequence model takes in input x and random variables z,
and outputs y1 = v2, y2 = v3 and y3 = v1 in three steps. (b) the assignment
(y1, y2, y3) = (v2, v3, v1) corresponds to path s

v2−→ u1
v3−→ u4

v1−→ t in the multi-
valued decision diagram.

2.3 Constraint Reasoning Embedded in Structured Prediction

Core-Sp is motivated to address the lack of constraint satisfaction in sequence-to-

sequence structured prediction models. One key idea that leads to the development of

Core-Sp is the correspondence between the predicted outcomes of a sequence-to-sequence

model and a path in a multi-valued decision diagram (MDD). Figure 2.4 provides an ex-

ample. In this example, the sequence-to-sequence model outputs a sequence of variables’

assignment y1 = v2, y2 = v3, y3 = v1 in Figure 2.4(a), which exactly corresponds to the

highlighted blue path in the MDD in Figure 2.4(b). Nevertheless, the sequence-to-sequence

model is also likely to output a variable assignment with no correspondence to the MDD.

For example, suppose the neural model in Figure 2.4(a) outputs y1 = v2, y2 = v3, y3 = v2,

there are no corresponding path in the MDD in Figure 2.4(b). This is the case where the

output of the sequence-to-sequence model violates the all-diff constraint. Indeed, neural

network-based models for structured prediction problems are not guaranteed to satisfy con-

49

straints as in Equation (2.1), which forms a key limitation of the state-of-the-art structured

prediction models.

Core-Sp ensures constraint satisfaction of the neural network prediction by limiting the

values that each variable can take following the flow of the MDD. Suppose we set y1 = v2

and y2 = v3 in Figure 2.4(b) and arrive at node u4, the only valid option for y3 is to set

y3 = v1. The rest options y3 = v2 or y3 = v3 lead to constraint violations. Hence Core-Sp

masks out the choices of y3 = v2 and y3 = v3 for the sequence-to-sequence model. In this

way, Core-Sp addresses one key limitation of structured prediction models. We provide the

details of Core-Sp in the next section.

2.3.1 Constrained Reasoning Embedded in Structured Prediction

The proposed Core-Sp creates an additional layer to the sequence-to-sequence model

to enforce constraint satisfaction for the structured problems. It can be plugged into various

structured prediction neural networks for different tasks. in this chapter, we demonstrate the

Core-Sp layer on the sequence-to-sequence structured prediction network. Core-Sp works

by masking out the output which violates constraints, hence providing correctness guaran-

tees. Following the discussions of Section 2.2.1, the sequence-to-sequence structure prediction

neural network takes input x = (x1, x2, . . . , xT) and z = (z1, z2, . . . , zT) in sequential format

and outputs y = (y1, y2, . . . , yT). In the k-th step, score vector ok = (ok1, ok2, . . . , okDk
) is

produced by the sequence-to-sequence network, in which okj represents the un-normalized

likelihood that yk takes the value vj. Vector pk = (pk1, pk2, . . . , pkDk
) is the result after nor-

malizing ok, where pkj is the probability for variable yk to take the value vj. Without the

addition of Core-Sp layer, certain pkj’s which lead to constraint violations may be assigned

with a positive probability value.

The Core-Sp module enforces constraints by masking out certain entries pkj of the vector

pk which leads to constraint violations. Core-Sp tracks a pivot node in the associated MDD.

Initially, the pivot node starts at the source node of the MDD and descends along a path

determined by the output of Core-Sp in a sequential way. In the example in Figure 2.4,

the pivot node starts at node s, descends along nodes u1, u4, and arrives at t, following the

50

output of the sequence-to-sequence model. In each step, Core-Sp maintains a mask vector

ck = (ck1, ck2, . . . , ckDk
) based on the current pivot node. ck is used to mask out entries in

pk that will lead to constraint violation. ckj is set to 0, if there is no path labeled with

vj leaving the current pivot node. Otherwise, ckj is set to 1. Suppose the pivot node is

at u1 in the example shown in Figure 2.4, c22 is set to 0, and c21, c23 are set to 1 because

the two outgoing edges from u1 are labeled with v1 and v3. The next step of Core-Sp is

the element-wise multiplication of pk and ck, resulting in p′
k. Denote � as the element-wise

vector-vector product, the masking step is computed as p′
k = pk � ck. Those entries that

lead to constraint violation in p′
k are zeroed out. To make sure that the probabilities sum up

to 1, p′
k further goes through a re-normalization step. The re-normalized probability vector

is computed as: p̃kj = p′
kj∑

j′ p′
kj′

. Finally, zk is sampled uniformly at random from U(0, 1)

and the output yk is decided based on the cumulative probabilities Pk1, Pk2, . . . , Pk(Dk+1)

computed from p̃k: Pk1 = 0, and Pkj = ∑j−1
j′=1 p̃kj′ , for j = 2, 3, . . . , Dk and Pk(Dk+1) = 1. yk

is set to the value of vj if and only if zk ∈
[
Pkj, Pk(j+1)

)
. Denote assignment indicator vector

qk = (qk1, qk2, . . . , qkDk
), where qkj is an indicator variable for yk = vj. This implies qkj is 1 if

and only if yk = vj, otherwise qkj = 0. After setting the value of yk, the pivot node descends

to a new node along the corresponding arc in the MDD. To conclude, the computational

pipeline at the k-th step is reflected in the following equations:

pkj = exp(okj)∑Dk
j′=1 exp(okj′)

, (2.4)

p′
k = pk � ck, (2.5)

p̃kj =
p′

kj∑Dk
j′=1 p′

kj′
, (2.6)

(2.7)

51

Pkj =



0 for j = 1,∑j−1
j′=1 p̃kj′ for j = 2, 3, . . . , Dk,

1 for j = Dk + 1.

(2.8)

(2.9)

qkj =


1 if zk ∈

[
Pkj, Pk(j+1)

)
,

0 otherwise.

(2.10)

(2.11)

yk = vj, if qkj = 1, for 1 ≤ j ≤ Dk (2.12)

where � denotes the element-wise product between two vectors and zk ∼ U(0, 1). We

illustrate how Core-Sp works using the following Example 2.3.1.

Example 2.3.1. We illustrate the procedure of Core-Sp using the example in Figure 2.5.

Initially, the pivot node for tracking the MDD is set as root node s. The first step is to set the

value for the first variable y1. Here, the neural network outputs an un-normalized likelihood

vector o1 = (0.1, 0.2, 0.3). The next softmax layer takes in o1 and outputs normalized prob-

ability vector p1 =
(

exp(0.1)
exp(0.1)+exp(0.2)+exp(0.3) ,

exp(0.2)
exp(0.1)+exp(0.2)+exp(0.3) ,

exp(0.3)
exp(0.1)+exp(0.2)+exp(0.3)

)
≈

(0.30, 0.33, 0.37). From the MDD on the right hand side, y1 has only two valid assign-

ments, v2 or v3. Therefore, Core-Sp produces a mask vector c1 = (0, 1, 1), which forbids

y1 taking the value v1. As in Equation (2.5), multiplying p1 with c1 elementwisely gives us

an un-normalized probability vector p′
1 = (0, 0.33, 0.37). After the re-normalization opera-

tion in Equation (2.6), we obtain p̃1 = (0, 0.33
0.33+0.37 , 0.37

0.33+0.37) ≈ (0, 0.47, 0.53). According to

Equation (2.10), the cumulative probability vector would be: P1 = (0, 0, 0.47, 1). We then

uniformly sample z1 with random between 0 and 1. In this example, z1 = 0.4 ∈ [0, 0.47),

hence we get vector q1 = (0, 1, 0) and set y1 = v2. After setting y1’s value, Core-Sp set

the pivot node to u1 following the arc e(s, u1) = v2. It continues the same process of setting

52

Softmax

Output

s

u1 u2

u3 u4 u5

v2 v3

v1 v2v3 v1

v1

t
v3 v2

s

0.1 0.2 0.3
v1 v2 v3

RNN

0.3 0.33 0.37
v1 v2 v3

h0

z1 = 0.4

y1 = v2

-0.1 0.2 0.1
v1 v2 v3

RNN

0.28 0.38 0.34
v1 v2 v3

h1

z2 = 0.8

y2 = v3

-1 0 1
v1 v2 v3

RNN

0.1 0.24 0.66
v1 v2 v3

z3 = 0.2

y3 = v1

h2 h3

o1 o2 o3

0 1 1
v1 v2 v3

1 0 1
v1 v2 v3

1 0 0
v1 v2 v3

/ 0.33 0.37
v2 v3

0.28 / 0.34
v1 v3

/ 0.47 0.53
v2 v3

0.45 / 0.55
v1 v3

1 / /
v1

0 1 0
q12 q13

0 0 1
q21 q23

1 0 0
q11 q22 q31 q33q32

Mask

Re-norm

u1 u4 t
pivot pivot pivot pivot

0.1 / /
v1

y1

y2

y3

CORE-SP

MDD

Input x1, x2, …, xT

Sequential Encoder

Sequential
decoder

v2

v2 v2

v2 v3

v3

v1

v1

Figure 2.5. Architecture of embedding Core-Sp into a sequence-to-sequence
model for the decision variables y1, y2, y3, where the highlighted Core-Sp
module encodes the exact MDD in Figure 2.2(a). Core-Sp descends layer-
by-layer in the MDD. Initially, the pivot node of Core-Sp is at root s. The
node s limits the value of y1 to be y1 ∈ val(s) = {v2, v3}. If the model picks
y1 = v2, then the pivot node moves to node u1 following the arc e(s, u1) = v2.
Next, the node u1 limits the value of y2 to be y2 ∈ val(u1) = {v1, v3}. If the
neural model picks y2 = v3, then the pivot node shifts to node u4 following the
arc e(u1, u4) = v3. Finally, the pivot node descends to u4 following the single
outgoing arc: e(u4, t) = v1. Hence the assignment for variable y3 becomes
y3 = v1.

values for y2 and y3. This example sets y2 to v3 and y3 to v1, which corresponds to the blue

path in the decision diagram on the right-hand side.

Proposition 2.3.2. Let M be an exact MDD that is compiled from the constraint set C,

the sequence-to-sequence model with the addition of Core-Sp is guaranteed to generate

structured outputs satisfying all constraints in C.

Implementation. Core-Sp allows for efficient back-propagation of the gradient of the

neural network’s parameters. In model training, all computations are differentiable during

53

the gradient backward pass except for the setting of qkj values. qkj is set to 1 if and only if zk ∈

[Pkj, Pk(j+1)). In other words, qkj’s value is determined by qkj = 1{zk ≥ Pkj}1{zk < Pk(j+1)}.

When computing ∂qkj/∂Pkj, we use the sigmoid function with a very large constant to replace

the indicator function 1{·}. This operation allows for gradient propagation and improves the

numeric stability of gradient computation, and avoids producing NaN or Infinity gradients.

For the cases where the loss function can be directly defined on p̃k = (p̃k1, p̃k2, . . . , p̃kDk
), such

as the cross-entropy loss, we do not use z variables to sample variables yk during training.

z variables are used during testing. See applications in later text. The MDD inside Core-

Sp is implemented with two key-value dictionaries. One dictionary memorizes all the mask

vectors. It uses the nodes in the MDD as keys and returns the corresponding mask vectors.

The other dictionary saves the connectivity of the MDD, it uses the current node in MDD

as the key and returns all of its following nodes in the next step. This dictionary allows for

the pivot node to descend along the path and is also used for the node split and arc filtering

procedure discussed in the next section.

2.3.2 Discussions

Connection to Existing Works There are several existing works that also use reasoning

tools to enforce constraints in neural-network-based models. OptNet [20] and MIPaaL [21]

propose to encoding quadratic programming (QP) or mixed integer programming (MIP) to

enforce constraints, these methods back propagates the gradients through their optimality

conditions. Both approaches require solving a linear programming problem (or MIP problem)

in the forward pass. In contrast, our approach pre-computes the feasible set and therefore

can be integrated “as is” into the neural net. No LP or MIP solver is needed.

Another line of work encourage sparsity on the structured output. The sparseMAP

method ([56]) models the probability distribution using a combination of a few sparse struc-

tured outputs. Their sparsity assumption implicitly enforces constraints by assigning invalid

solutions zero probabilities. Nevertheless, their overall formulation needs to be convex,

which limits the types of combinatorial constraints they can handle. The authors gen-

eralize their approaches to handle more general logic constraints in their follow-up work

54

LP-sparseMAP [64]. Their approach is to decompose the problem in the factor graph, and

uses the Alternating Direction Method of Multipliers (ADMM) to enforce the consistent

value assignments towards variables. This approach indeed provides a good way to handle

constraints in structured prediction. However, ADMM only ascends towards the maximum

of the dual problem, albeit the primal-dual gap can be large for non-convex problems. Our

approach Core-Sp provides an alternative way to handle constraints beyond problem de-

composition and harnessing the primal-dual gap.

[22] propose a strategy to formalize the constraints as an automata. During inference,

the outputs are generated by walking step-by-step in the automata. Compared to this work,

the MDD we use is similar to the automata since both of them only uses valid paths as

valid solutions. However, we enforce Core-Sp during both learning and inference stages

while their space-optimized automata can only be applied in inference. We will show in

Section 2.6 that constraint satisfaction during learning actually leads to improvement in

learning performance because of the reduced modeling space. In addition, we propose a

relaxed search algorithm in Section 2.4 for MDD structures to automatically find the sweet

point balancing model complexity and learning performance.

2.4 Searching for the Optimal CORE-SP Structure

The exact MDDs for real-world problems could be arbitrarily large, so the exact MDD

may consume too much memory overhead. Because of the large space complexity of exact

MDDs, it is not practical to deploy the Core-Sp with the exact MDD on several real-world

problems. Also a large MDD implicitly implies a complex output space, which requires more

data to learn an accurate model. In problems where exact MDDs are not practical, relaxed

MDDs can be used to reduce the memory requirement. The set of solutions of a relaxed

MDD forms a super-set of those of the exact MDD. In this section, we explore the trade-

off between space complexity and learning performance by exploring the usage of relaxed

MDDs.

To find the optimal MDD structure which balances memory consumption and learning

performance, we propose an iterative search procedure in Algorithm 1. We tune the width

55

Algorithm 1: Iterative algorithm for searching optimal performance of Core-Sp.
Input: Training set Dtr, validation set Dval; Parameters of sequence-to-sequence

neural network θ; Constraints C; Maximum layer width ωmax.
Output: Core-Sp module (M, θ) with optimal performance.

1 Lprev = +∞;
2 M = initMDD(C, w = 1); // initialize the width-1 MDD
3 for w = 2 to ωmax do
4 θ = train(θ, M, Dtr); // learn θ with MDD on training data
5 L = validation(θ, M, Dval); // evaluate on validation data
6 if L > Lprev then
7 break;
8 else
9 Lprev = L;

10 M = relaxMDD(M, C, w); // relax MDD with a larger width

11 return M, θ; // find the optimal Core-Sp
12 Procedure relaxMDD(M, C, w):
13 for layer = 1 to layerSize(M) do
14 while |M[layer]|< w do
15 do
16 u = M[layer].pop(); // pick node u to split
17 while |u.in|<=1;
18 vi, wi = nodeSplit(u.in); // split incoming arcs of node u
19 v = node(vi, u.out); w = node(wi, u.out);
20 arcFilter(v, w, C); // filter invalid arcs by constraints
21 M[layer].add(v, w); // update the MDD with new nodes
22 M[layer].delete(u);

23 return M;

parameter to find a relaxed Core-Sp that achieves the optimal performance. The algorithm

starts increasing the width from 1 to the given hyper-parameter maximum layer with ωmax,

iteratively learning Core-Sp model with new MDD modelM on the training set, validating

their learning performance on a separated validation data set until finding a good MDD

structure. The inputs to Algorithm 1 are training and validation data sets (Dtr, Dval),

parameters of the sequence-to-sequence neural network θ, a set of constraints C and the

maximum width ωmax of MDD. At beginning, the initMDD function initializes a width-1

MDD. At every iteration, the train function trains the neural network with the constraints

56

enforced in the relaxed MDD via gradient descent on the training data set. This is detailed

in Section 2.3.1. Then the validation function evaluates the performance on a separate

validation data set. In line 6 − 9 of Algorithm 1, we evaluate if the current MDD has a

better performance than the previous one. If the loss on the validation set is decreasing, the

algorithm would continue the relaxation; otherwise, the algorithm terminates and returns

the current Core-Sp as well as the learned parameters.

For the relaxMDD procedure, it takes a relaxed MDD as input and relaxes all its layers

from top to bottom to the given width. For each layer, the algorithm repeatedly picks a

node and then split it into two nodes, which corresponds to the nodeSplit function until

the width of the layer reaches the given width. Every node split is followed by arc filtering

process to enforce constraints, that we use arcFilter to denote the process. See Figure 2.3

for an example of nodeSplit and arcFilter process on a relaxed MDD.

Note that in node splitting (line 14 − 17 of Algorithm 1), those nodes with only one

incoming arc are skipped for the splitting process, i.e., u.in ≥ 1. In our paper, the heuristics

for splitting is: the set of incoming arcs (noted as .in) of the original node is randomly

assigned to the two newly created nodes (v, w) and then the outgoing arcs (noted as .out)

are copied to nodes v, w. There are other heuristic methods for node splitting. We refer the

readers to [63] for details. The arcFilter function is applied to remove those outgoing arcs

that lead to constraints violation.

Limitations While the advantages of Core-Sp have been demonstrated with a few real-

world applications, several limitations of Core-Sp present and we leave the development

of new methods addressing these limitations as future work. First, the current constraint

reasoning module based on MDDs cannot enforce continuous-valued constraints. Indeed, dis-

cretization can transform continuous constraints into discrete ones and apply the developed

Core-Sp, however such discretization may result in very large decision diagrams. Second,

the decision diagram is based on a sequence-to-sequence structured prediction model. Other

encoding-decoding structures, for example encoding-decoding on a graph, may require ex-

ploring other types of structured prediction models. We leave the work to address these

limitations as future works.

57

2.5 Applications

2.5.1 Vehicle Dispatching Service Planning

Task Definition. Consider a routing problem in which one needs to dispatch a service

vehicle to perform maintenance at a set of locations. The sets of locations differ per day and

are rarely the same. Previous routes indicate that the driver does not follow a clear objective,

such as minimizing the distance or time. Instead, historical data suggest that the driver has

an underlying route preference, such as visiting a shopping mall after leaving a restaurant.

Our task is: given the historic routes and a set of requested locations, determine a path that

visits all the locations once and only once while capturing the hidden trends embedded in the

historical data. To be specific, given a request to visit a set of locations x = {x1, x2, . . . , xTi
}

in the i-th day, determine y = (y1, y2, . . . , yTi
), which forms a permutation of x and captures

the driver’s preferences. For this application, we assume an upper bound T on the number

of sites to visit per day. In other words, for all i, Ti ≤ T .

Traditional optimization methods such as integer programming or constraint program-

ming do not work well in this context since they are unable to represent an appropriate

objective function for the latent route preference [65]. Machine learning models can be used

to learn the underlying pattern from the historical routes [66]. Nevertheless, the routes gen-

erated from pure machine learning models cannot satisfy key operational constraints. They

may visit some locations multiple times, or fail to visit all locations. Post-processing steps,

such as removing redundant locations and randomly appending unvisited locations, have

been tried to fix the output of machine learning models [41]. However, their performance

are limited in our experiments (see Section 2.6.1 for details).

Constraint Definition. The input of this application is a set of locations to visit for day i:

x = {x1, x2, . . . , xTi
}. The goal is to generate a schedule y to represent the order of visiting

the locations, where y is a permutation of x. The route y needs to satisfy the following

constraints:

• full-cover constraint. The delivery route should visit all and only the locations in

x. In other words, the set of locations in y is the same as the set in x.

58

s

u1 u2

u3

t

Hof Haar

t t

Haar Hof

t

s

u1

u2

t

Hof Haar

t
Hof Haar

t

(a) exact MDD (b) width-1 relaxed MDD

Figure 2.6. The MDDs used in vehicle dispatching service planning. (a) An
exact MDD which models the visit to “Hof”, or “Haar”, or both of them. All
arcs of solid lines are of first type and arcs of dashed lines are of second type,
which directs the delivery agent to the stop location t. (b) A width-1 relaxed
MDD, which is formed by combining nodes u1 and u2 of the exact MDD.

• all-diff constraint. The route should not visit one place twice. In other words,

yj 6= yk for all yj, yk ∈ y and j 6= k.

MDD Construction. The delivery routes have at most T locations in the data set, so the

MDD graphM would contain T + 2 layers. There is a single source node s in the first layer

and a single sink node t at the last layer. There are two types of arcs in the MDD. For the

first type, an arc e(u, u′) = vi (where u′ 6= t) in the j-th layer represents that we visit vi as

the j-th location in the schedule. The second type of arcs e(u, t) = t connect every node to

the sink node t, allowing the delivery agent to travel to the ending location at any time.

Figure 2.6(a) shows an example MDD. Here, the delivery agent needs to visit “Hof” and

“Haar” or both of them. The arcs of the first type are shown in solid lines and the arcs of

the second type are shown in dashed lines. The two arcs e(s, u1) = Hof, e(s, u2) = Haar

leaving the root node s denote the first location that the delivery agent visit, which can be

either “Hof” or “Haar”. The three arcs e(u1, t) = e(u2, t) = e(u3, t) = t are of second type.

The purpose is to bring the delivery agent to the ending location t. In practice, an MDD

that represents all valid paths can be exponential with respect to the number of maximum

locations. Figure 2.6(b) shows a width-1 relaxed MDD, formed by combining nodes u1 and

59

u2 in Figure 2.6(a). The paths in relaxed MDDs are supersets of all valid paths. As we can

see, “Hof→ Hof→ t” is a path in the relaxed MDD, but it violates the all-diff constraint.

MDD Filtering to Process Daily Requests.The previously constructed MDD contains

routes up to length T visiting all the locations. The delivery request of each day is a subset

of these locations, where the length Ti is less than T . Therefore, we present FilterDaily

which augments the aforementioned MDD into MDDs encoding schedules that meet daily

requests. FilterDaily removes arcs that represent the visits to locations outside of each

day’s requested set. It also removes arcs of the second type that visit too many or too few

locations. Then, working from the last layer up to the first layer, FilterDaily recursively

removes nodes or arcs that are unreachable from node t.

Proposition 2.5.1. SupposeM is an exact MDD representing routes up to length T visiting

all the locations. The delivery request for day i is x. Then FilterDaily(M, x) returns an

exact MDD which includes all valid routes that satisfy the delivery need for day i.

Model Structure. We employ Core-Sp module on a conditional Generative Adversarial

Network (cGAN) to generate routes that capture the implicit preferences of the drivers as

well as preserving the operational constraints. In the generative adversarial structure, the

generator network G is trained to generate routes to mimic the pattern in the training data

set. The discriminator network D is trained to separate the generated routes from the actual

ones in the training data set. When training converges, the discriminator should not be able

to tell the difference between the true outputs and the structures generated by the generator.

In return, the generator generates structures that closely look like the ones in the data set.

The Core-Sp module is embedded in the generator and filters out those routes that violate

the operational constraints. As a result, the generated routes would satisfy all operational

constraints. We employ the conditional GAN model structure because the element-wise loss

function is not ideal to measure the distance between the predicted route and the ground

truth route. Suppose one route (yT , yT −1, . . . , y1) is a circular shift of the optimal route

(y1, y2, . . . , yT). Both of them may be equally good to fit the delivery constraints as well

as the driver’s underlying preference. However, an element-wise loss function penalizes the

shifted route heavily because it is different from the optimal route in every location.

60

Softmax

Output

s

0.1 0.2 0.3
v1 v2 v3

LSTM

0.3 0.33 0.37
v1 v2 v3

h0

z1 = 0.4

ỹ1 = v2

-0.1 0.2 0.1
v1 v2 v3

LSTM

0.28 0.38 0.34
v1 v2 v3

h1

z2 = 0.8

ỹ2 = v3

-1 0 1
v1 v2 v3

LSTM

0.1 0.24 0.66
v1 v2 v3

z3 = 0.2

ỹ3 = v1

h2 h3

o1 o2 o3

0 1 1
v1 v2 v3

1 0 1
v1 v2 v3

1 0 0
v1 v2 v3

/ 0.33 0.37

v2 v3
0.28 / 0.34

v1 v3

/ 0.47 0.53
v2 v3

0.45 / 0.55
v1 v3

1 / /
v1

0 1 0
q12 q13

0 0 1
q21 q23

1 0 0
q11 q22 q31 q33q32

Mask

Re-norm

u1 u4 t
pivot pivot pivot pivot

0.1 / /
v1

Generator

LSTM LSTM
s̃1 LSTM

Discriminator

y1 y2 y3

s1

s̃2
s2

s̃3
s3

CORE-SP

v2 v3

v2 v3

v2

v2

v1

v1

x1, x2, …, xT

Sequential Encoder

Input

Sequential
decoder

Figure 2.7. The conditional GAN with Core-Sp module for the vehicle
dispatching service planning problem. x represents the requested delivery lo-
cations in day i. (ỹ1, ỹ2, . . .) represents the generated path from Core-Sp,
represented using indicator vectors (q1, q2, . . .). The Generator G takes the set
of locations x as input and use a sequential encoder to learn a representational
vector. Then it outputs a sequence of score vector (o1, o2, · · ·) using a sequen-
tial decoder, where oj denotes the likelihood of picking the next locations at
j-th step. The Core-Sp module removes invalid locations. The Discrimina-
tor D is used to separate the real path (y1, y2, . . .) from the generated path
(ỹ1, ỹ2, . . .).

The overall conditional GAN with Core-Sp architecture is shown in Figure 2.7, which

is composed of the generator G and the discriminator D. The generator G take the set of

locations x as input and outputs the un-normalized score vectors (o1, o2, · · ·), where vector

oj denotes the un-normalized likelihood of visiting each location at the j-th step. Core-

Sp takes in these score vectors and the random values (z1, z2, · · ·) as inputs, and outputs

61

a valid route (q1, q2, · · ·). Here, vector qj = (qj1, . . . , qjN), and qjk is an indicator variable

representing whether location k is visited in the j-th step. Finally, the discriminator function

D tries to separate the predicted route (q1, q2, · · ·) and the ground-truth route (y1, y2, · · ·).

Here, each yj = (yj1, . . . , yjN) is again represented as a vector, where yjk indicates whether

to visit location k in the j-th step. The generator G uses a encoder to learn a representation

vector for the input and uses a sequential decoder to generate the schedule.. The daily

request x is fed as input vectors of each step where the locations in the requested set are

marked as 1. G uses the following LSTM structure to generate the schedule:

hj = LSTM(x, hj−1),

oj = Whj,

where the score vector oj represents the likelihood of picking next location in the j-th step.

The score vector oj along with the random variable zj are fed into the Core-Sp module. The

Core-Sp module removes invalid locations and produces qj according to the random value

of zj. The detailed equations of Core-Sp can be seen in Section 2.3.1. For the discriminator

D, it is trained to separate the generated schedule q = (q1, q2, . . . , qTi
) from the real schedule

y = (y1, y2, . . . , yTi
). It uses the following LSTM structure:

s̃j = LSTM(qj, s̃j−1),

sj = LSTM(yj, sj−1),

where s̃j denotes the hidden vector after encoding the first j generated locations and sj

denotes the hidden vector after encoding the first j locations in real data. The output of the

discriminator D is σ(Us), where U is a linear transformation matrix and s is either sTi
or s̃Ti

.

σ(s) = 1/(1 + exp(−s)) is the sigmoid activation function. Overall, D and G are trained by

minimizing the loss function in a competing manner using stochastic gradient descent. The

loss function is:

min
G

max
D

Ex,y [log D (y, x)] + Ez,x,y [log (1−D (G (x, z) , y))] .

62

Output labels:

Input sentence:
Blink light of your Philips Hue when your Amazon Alexa timer hits 0.

amazon-alexa timer-goes-off Philips-hue blink-light

trigger-service yts trigger-function ytf action-service yas action-function yaf

Figure 2.8. An example of if-then program synthesis task. The input is
a natural language description of the program. The output are four la-
bels: trigger-service, trigger-function, action-service and action-
function. The semantics of the synthesized if-then program are: if trigger-
function happened at trigger-service, then take action-function at the
action-service.

2.5.2 If-Then Program Synthesis

Task Definition. Many Internet applications provide automatic services to meet the users’

needs, such as the Weather Underground website provides daily weather reports and Youtube

provides video streaming services. Connectivity platforms such as IFTTT1 and Zapier2

streamline services from different providers by connecting simple services into more complex

ones, in the form of if-then programs. For instance, the smart device Philips Hue can

automatically blink lights when commands are sent from a cellphone. Amazon Alexa can

be programmed as a timer via voices. Given these two services, users can set up an if-

then program on the IFTTT platform for more complicated tasks. For example, an if-then

program can command the Philips Hue to blink lights when the timer in Amazon Alexa

reaches zero. Nevertheless, the interface on the IFTTT website still takes a few hours to

learn, especially for beginners without programming experience. It would be great if such

if-then programs can be automatically synthesized from the natural language to provide

suggestions for those beginners. This helps to reduce the overhead in using such platforms

and boost the users’ efficiency.

We consider the task of generating if-then programs from the natural language as a

structured prediction task. In our setup, an if-then program is made up of four components:
1↑https://ifttt.com/
2↑https://zapier.com/

63

https://ifttt.com/
https://zapier.com/

trigger-service, trigger-function, action-service, and action-function. The logic

is “if trigger-function happens in the trigger-service, then take the action-function

from the action-service”. Such programs can be represented using this pseudo-code:

IF trigger-service.trigger-function THEN

action-service.action-function

Figure 2.8 shows an example of this task. We would like to transform a user’s text description:

“Blink light of the Philips Hue when the Amazon Alexa timer hits 0” into the following if-then

program:
IF Alexa.timer-go-off THEN

Hue.blink-light

The challenge in if-then program synthesis is to enforce the constraints between the services

and the associated functions. Without enforcing constraints, the output of the structured

prediction model may be invalid. For instance, the model can predict “Hue” for trigger-

service, but assigns “report rain” to the trigger-function, which we know before training

that the smart device “Hue” does not provide any weather reporting services.

Constraints Definition. We enforce the Functionality constraint for the if-then program

synthesis. Let s be a service. We define a mapping F (s) to be the set of functions which

can be associated with s. For example, if s is “weather service”, then the output of F (s) is

a set that contains functions of “hourly report”, “tomorrow forecast”, and “severe weather

alarms”, etc. The Functionality constraints for all the four components are:

trigger-service = s⇒ trigger-function ∈ F (s),

action-service = s⇒ action-function ∈ F (s).

The mapping F (s) are collected from the introduction pages of every internet application

and are provided to us as prior information.

MDD Construction. The Functionality constraints can be represented using an MDD

with five layers, where the first layer has one source node s and last layer has one sink node

t. Each arc between the 1st and the 2nd layers corresponds to one value assignment to the

variable trigger-service. Each arc between the 2nd and 3rd, 3rd and 4th, and 4th and 5th

64

layers corresponds to the value assignment to variable trigger-function, action-service,

and action-function, respectively. Figure 2.9(a) and (b) represent a width-1 and width-2

MDD for if-then program synthesis.

In the MDD, multiple arcs from the first layer can be connected to a single node u

in the second layer. The node u hence represents the set of if-then programs which have

a given subset of trigger services. The set of arcs leaving from u represents the union of

all the trigger functions which are associated with the trigger services connecting u. For

example, Figure 2.9(a) demonstrates that both Alexa and Youtube can be associated with

the streaming and timer services. Notice that this is a relaxed MDD. In practice, only Alexa

has the timer service and only Youtube has the streaming service. Similar semantic meaning

holds for the arcs between the 3rd and 4th layers, representing action services and action

functions.

The width of the MDD can be expanded to enforce constraints more precisely. Fig-

ure 2.9(b) shows an example for this. Here, the nodes u1 in (a) is split into two nodes

ũ1, û1 in (b). After arc filtering, ũ1 is connected to “timer” only while û1 is connected to

“streaming” only because only “Alexa” has the service “timer” and only “Youtube” has the

service “streaming”. Similar node splitting and arc filtering are applied for action services

and functions as well. In a nutshell, the relaxed MDD can be expanded into an exact one

using repeated node splitting and arc filtering.

Model Structure. We employ Core-Sp on the Latent Attention model proposed by

[42], which achieved the state-of-the-art result on if-then program synthesis. The Latent

Attention model is a bidirectional LSTM with residual connection, followed by the self-

attention mechanism. To be specific, the bidirectional LSTM (Bi-LSTM) encodes a natural

sentence input of length T : x = (x1, x2, . . . , xT) into T latent vectors (h1, h2, . . . , hT). Here,

xj is a one-hot vector representing the j-th word in the sentence. Each vector hj is a

concatenation of a forward vector
−→
hj and a backward vector

←−
hj . Suppose vector

−→
hj and

←−
hj are of length m, vector hj will be of length 2m. The forward vector

−→
hj is the result

of encoding input words x1, x2, . . . , xj from the left through an LSTM, and the backward

65

trigger-service

trigger-function

action-service

action-function

s

u1

u2

u3

t

Alexa Youtube

streaming timer

Hue Twitter

light tweet

s

u1 u2

u3

u4 u5

t

Alexa Youtube

streaming timer

Hue Twitter

light tweet

(a) width-1 relaxed MDD (b) exact MDD

Figure 2.9. Examples of a relaxed and an exact MDD for the if-then pro-
gram synthesis task. The exact MDD in (b) models constraints that only the
timer service is provided by Alexa, and only the streaming service is provided
by Youtube. Similarly, only Hue provides the light service, and only Twitter
provides the tweet service. (a) is a relaxed MDD, where both trigger ser-
vices provide both trigger functions, and both action services provide action
functions.

vector
←−
hj is the result of encoding input words xT , . . . , xT −j from the right. More precisely,

in mathematical form: −→
hj = LSTM(xj,

−−→
hj−1),

←−
hj = LSTM(xT −j+1,

←−−
hj+1),

hj =
[−→
hj ;←−hj

]
.

where [;] denotes vector concatentation. The detailed equations for LSTM neural network

with a residual connection can be seen in [67]. In the second step, we encode the sequence

of vectors (h1, h2 · · · , hT) into a single vector g through an attention mechanism, which is

similar to [68]:

αjk = exp(hk
>hj)∑T

k′=1 exp(hk′
>hj)

, for all j, k ∈ {1, · · · , T},

g =
T∑

j=1

T∑
k=1

αjkhk

This Bi-LSTM with attention neural network structure encodes the entire sentence into one

latent vector g of size 2m. Let Uts be a matrix of size |#service| × 2m, where |#service| is

66

Softmax

Output

s

0.1 0.2 …
v1 v2 . . .

Bi-LSTM

x1

0.21 0.24 …
v1 v2

…

h0

zts

yts = v2

h1

ots

0 1 …
v1 v2

…

/
/ 0.33 …

v2 …

/
/ 0.47 …

v2
…

0 1 …
qts,2 …qts,1

Mask

Re-norm

u1
pivot pivot

CORE-SP
-0.1 0.2 …
v1 v2 . . .

Bi-LSTM

x2

0.28 0.38 …
v1 v2

…

ztf

ytf = v1

h2

otf

1 0 …
v1 v2

…

/
0.28 / …

…

1 0 …
qtf,2 …qtf,1

u2
pivot

-1 0 …
v1 v2 . . .

Bi-LSTM

x3

0.1 0.24 …
v1 v2

…

zas

yas = v4

h3

oas

0 0 …
v1 v2

…

/ /
/ / …

…

/ /
/ / …

…

0 0 …
qts,2 …qts,1

u3

pivot

-0.3 -0.4 …
v1 v2 . . .

Bi-LSTM

…

0.01 0.09 …
v1 v2

…

zaf

yaf = v3

oaf

0 0 …
v1 v2

…

/
/ 0.33 …

v2 …

/ /
/ / …

…

0 0 …
qts,2 …qts,1

t
pivot

Attention mechanism

v1

/
0.28 / …

…v1

…
Input

Figure 2.10. Model structure of If-then program synthesis. Text input
x1, x2, · · · , xT is fed into bi-directional LSTM with self attention mechanism.
The un-normalized likelihood vectors ots, otf , oas, oaf are fed into the Core-Sp
module for constraint satisfaction.

the number of trigger-service. We define matrices Utf , Uas, Uaf for trigger-function,

action-service, action-function respectively with their corresponding shapes. The un-

normalized likelihoods for trigger-service ots, for trigger-function otf , for action-service

oas, and for action-function oaf are defined as

ots = Utsg, otf = Utfg, oas = Uasg, oaf = Uafg.

These vectors ots, otf , oas, oaf are fed into the Core-Sp module. During training, we mini-

mize a cross entropy loss function between the ground-truth prediction and the probabilities

p̃ts, p̃tf , p̃as, p̃af produced from Core-Sp (definition of these probabilities are in Equa-

tion 2.6). This training procedure is similar to the teacher-forcing approach used in [53] to

accelerate the learning speed. Variables z are used to sample particular (trigger-service,

67

trigger-function, action-service, action-function) quadruples from the probability

distribution given by p̃ts, p̃tf , p̃as, p̃af during testing.

2.5.3 SQL Query Generation from Natural Language

Task Definition. Formatted data such as travel records and stock market transactions

are stored in the relational databases. Currently, accessing the database requires a data

scientist who masters the SQL query language. Our task is to automatically synthesize SQL

queries from natural language sentences using machine learning. Compared with the data

expert approach, SQL query generation requires deeper reasoning across the structure of the

database, the semantics of the structured query language, and the understanding of natural

language. As shown in Figure 2.11, the input of the text2SQL generation is a sentence that

describes the query in natural language and the table headers in the relational database.

The output is a SQL query with the following structure:
SELECT agg-op sel-col

WHERE (cond-col cond-op cond-val) AND ...

Here, SELECT and WHERE are the keywords in SQL language. What we need to predict are:

(1) the aggregation operator agg-op, which chooses among the set {empty, COUNT, MIN,

MAX, SUM, AVG}; (2) the column name in selection sel-col and (3) the column name in

condition cond-col, both of which are chosen from the table headers; (4) the conditional

operator cond-op, which is in {=, <, >}; (5) the conditional value cond-val, which are

assumed to be a sub-sequence of the given query. Here, one bracket () represents one

conditional statement. The SQL query may have multiple conditions, which are denoted by

“...” operator. Figure 2.11 displays this SQL query:

SELECT COUNT "School"

WHERE "No." = "3"

Here agg-op is COUNT; sel-col is “school”, which is a column name from the table headers.

One cond-col is “No.”, which also come from the table headers. The cond-op is “=”. The

cond-val is “3”, which we assume is from the input query. This example has one condition

but multiple conditions are allowed.

68

SELECT COUNT “School” WHERE “No.” = “3”

Player No. Position School

0 Antonio 21 Guard-Forward Duke

1 Voshon 2 Guard Minnesota

2 Marin 3 Guard-Forward Butler CC

Output SQL Query:

Input Query:
How many schools did player number 3 play at?

Input Table:

agg-op sel-col cond-col cond-valcond-op

Figure 2.11. An example for the Text2SQL generation task. The input is
the text query “How many schools did player number 3 play at?” and the ta-
ble header “Player, No., Position, School” from the relational database.
The output should be the SQL query: SELECT COUNT "School" WHERE "No."
= "3".

Constraints Definition. Existing generative neural models for this task are not guaranteed

to generate a query that follows the grammar of a SQL query. To avoid these grammar viola-

tions, we compile a set of common SQL grammars as constraints into the Core-Sp module.

The Core-Sp module will ensure that all the generated SQL queries follow the grammatical

constraints. Our constraints are defined on the operators, namely the conditional operator

cond-op and the aggregation operator agg-op. The domains of these operators are depen-

dent upon the data types of the entities (namely, cond-col and sel-col) they operate on.

Taking the previous example. The agg-op can only take values between {empty, COUNT},

because the sel-col is “school”, which is of the string type. More precisely, let s be a col-

umn header (the value of sel-col or cond-col) . We define Fa(s) as the set of aggregation

operators agg-op that can be associated with s, and Fc(s) as the set of condition operators

cond-op which can be associated with s.

Fa(s) =


{empty, COUNT, MIN, MAX, SUM, AVG} If s of is numeric type

{empty, COUNT} If s of is string type

Fc(s) =


{=, >, <} If s is of numeric type

{=} If s is of string type

69

The dataype constraints are defined as:

sel-col =s⇒ agg-op ∈ Fa(s),

cond-col =s⇒ cond-op ∈ Fc(s).

Model Structure. We embed the Core-Sp module to SQLova [43], the state-of-the-art

neural network for text2SQL generation. SQLova has a sequence-to-sequence architecture.

It first encodes a natural language sentence and the table headers into a high-dimensional

vector. Then the decoder of SQLova decodes the hidden representation into the predictions

of various entities in the SQL query. SQLova first determines the number of conditions in the

SQL query then fill in the (cond-col, cond-op, cond-val) for each condition. The operators

agg-op, cond-op are predicted as a classification task from a fixed set of operators. Column

names cond-col, sel-col are predicted from the set of table headers in the relational

database. The cond-val is predicted by a pointer neural network which points at a span of

the input natural language sentence. The selected span of the query is used as the cond-

val [69].

MDD Construction. The associated MDD that encodes the constraints for text2SQL

generation is similar to that in if-then program synthesis. The MDD is split into layers and

every two layers form a group. One two-layer group is used to enforce constraints on an

operator-column name pair. The operator-column name pair can be agg-op and sel-col,

or can be cond-op and cond-col. Note that there can be only one group of agg-op and

sel-col and more than one group of cond-op and cond-col. In the first layer of the group,

the column name is determined. In the second layer, the invalid operators are ruled out

based on the type of the column name selected in the first layer. The two-layer group is

copied several times because there can be multiple conditions allowed in the SQL query.

2.6 Results and Analysis

We demonstrate the effectiveness of the Core-Sp module on three applications. We

mainly focus on two metrics: (1) the percentage of valid structures generated; and (2) the

learning performance. Metric (1) evaluates whether Core-Sp is able to improve constraints

70

satisfaction for the structures generated by neural network models, while metric (2) consid-

ers whether Core-Sp improves the overall performance of neural network models in pattern

detection from data. For the task of if-then program synthesis and text2SQL generation,

accuracy was used as the metric for learning performance. It measures the percentage that

the predicted structures match exactly with the ground-truth structures in the testing set.

For the vehicle dispatching service planning, we introduce a quantitative metric that mea-

sures how close the generated routes resemble those in the training set. The quantitative

metric will be discussed later. We also demonstrate the effect of MDD structures, especially

the change of the layer width, on the overall performance of the Core-Sp module.

Our experimental results demonstrate the efficiency of Core-Sp in boosting both the

percentages of valid structures generated and the learning performance. In terms of con-

straint satisfaction, the percentage of valid routes generated increases from 1% to 100% for

vehicle dispatching service planning with the embedding of Core-Sp on a conditional GAN

model. The percentage of valid programs also increases from about 88% to 100% in the task

of if-then program synthesis when Core-Sp is added to the Latent Attention model, and

from 83% to 100% for text2SQL generation when Core-Sp is added to SQLNova on the

hard test set. Both the Latent attention and SQLNova are state-of-the-art models for the

corresponding tasks. Furthermore, the Core-Sp module also helps improve learning perfor-

mance. For the if-then program synthesis, the accuracy is 44% for Core-Sp compared to

42% for the Latent Attention model. The neural network also converges to relatively higher

accuracy with fewer training epochs. In the text2SQL task, the execution accuracy improves

from 76.1% obtained from the state-of-the-art SQLNova model to 78.0% while the logical

accuracy improves from 58.3% to 62.5% with the Core-Sp module embedded. The code for

all the experiments is collected at this link3.

2.6.1 Vehicle Dispatching Service Planning

Our experiments are on a data set consisting 29 cities in Bavaria4. We vary the number

of maximum locations T in the daily requests from 2 to 29 in generating the training and
3↑code summary: https://jiangnanhugo.github.io/CORE-SP/
4↑TSP data set: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/

71

https://jiangnanhugo.github.io/CORE-SP/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/

testing sets. We generate N = 10, 000 instances for every given T . The daily requests are

randomly sampled from all sets of locations of the specified size. The optimal delivering paths

are generated assuming that the delivery agent is maximizing a hidden reward function:

R(y) =
T −1∑
j=1

pref (yj, yj+1) . (2.13)

Here the scalar value pref (yj, yj+1) ∈ [0, 1] is the delivery agent’s implicit preference to visit

location yj+1 after leaving the location yj. When generating the data set, we enumerate all

valid delivery routes, and select the one that maximizes this reward function R. Notice that

this reward function R was fixed during the data generation step and was hidden to the

machine learning algorithms. During the evaluation, the reward function was used as one

quantitative measure for the quality of the routes generated. The higher the reward function

values, the better the machine learning algorithm was able to capture the hidden preferences

of the delivery agent.

As shown in Figure 2.12 (left), when we relax the MDDs iteratively, the memory usage

grows quickly to more than 1GB for moderately large T . The exact MDD is hardly to be

loaded into memory when the maximum location is T = 29. In this case, we also consider

an iterative algorithm which incrementally creates the exact MDD alongside the output of

the sequential decoder. At step t, we follow the prediction made by the sequential decoder

and only expand the MDD one step starting at the node selected by the sequential decoder.

This corresponds to only loading its current outgoing arcs at every predicted step of the

exact MDD. Using this idea, we are able to expand the exact MDD even for large number

of locations (T = 29).

Valid Routes Comparison. We evaluate the performance of Core-Sp in generating valid

routes over data sets of different sizes. We also include a post-processing method proposed by

the work of [41] as a baseline for comparison. The post-processing step is added to the output

of the conditional GAN without Core-Sp. First, we compare the performance of Core-Sp

implemented with exact MDDs against baselines. Notice we use the aforementioned iterative

algorithm when the number of locations T is too big for the relaxation algorithm. As shown

in Figure 2.13 (left), the baseline can only generate around 0.1% of valid routes. From

72

our manual inspection, the generated routes are mostly likely to visit one place more than

once. The post-processing method uses a mask vector to enforce that the model can only

visit the locations in the daily requested set, and then it removes all the duplicates in the

output schedule. Once we apply the post processing method on the output generated by

the baseline, the model’s performance is improved to 50% for the data set T = 2. However,

the post-processing method cannot handle the combinatorial complexity of the dispatching

problem, as its performance quickly falls close to the baseline when we increase the number of

locations in the daily requested set. In contrast, the percentage of valid routes is always 100%

using the exact Core-Sp. The percentage of valid routes using relaxed MDDs (width=128)

are shown in Figure 2.13 (right). We can see that Core-Sp still produces over 80% valid

routes.

Figure 2.12. (Left) the memory usage of relaxed MDDs. (Right) The
percentage of valid routes produced by Core-Sp using relaxed MDDs.

Route Reward Comparison. To evaluate the neural model’s capability of learning the

implicit preferences, we compare the reward function value of the routes generated from

the structured prediction algorithms and the ground-truth routes. Notice that the ground

truth routes are the ones that maximize the reward function R(·). We define the normalized

reward in the following way:

norm-reward = 1
N

N∑
i=1

R(ỹ)
R(y) , (2.14)

73

Figure 2.13. Our exact Core-Sp models outputs 100% valid routes in the
vehicle service dispatching task, while competing approaches, namely condi-
tional GAN (cGAN) and cGAN with post-processing cannot guarantee valid
routes. Experiments are carried out with varying maximum number of loca-
tions in the daily requests. (Left) Exact MDDs are created by the iterative
algorithm described in the main text. (Right) Relaxed MDDs are generated
with max width 220 to ensure that the memory consumption is less than 1 GB.

where routes ỹ are predicted from the machine learning algorithms and y are the ground-truth

routes that maximize the hidden reward function. According to our definition, norm-reward

cannot be greater than 1. The closer norm-reward is to 1, the better the generated routes

satisfy the hidden preferences of the delivery man. When computing this metric, we only

include valid routes, namely those satisfying the all-diff and full-cover constraints. N

is the number of valid routes generated by one algorithm in the test data.

Figure 2.14 demonstrates the normalized rewards of the valid routes generated by Core-

Sp and the baseline cGAN with post-processing. We can see that both methods can generate

routes which have a normalized reward score of 0.6 to 1. Compared with the normalized

reward value over the testing set, the routes generated by our Core-Sp module have more

stable normalized rewards than the model with post-processing.

74

Figure 2.14. Comparing the normalized reward value of the model with ex-
act Core-Sp and with post-processing methods. Core-Sp captures drivers’
hidden preferences in the vehicle service dispatching problem. The hidden
preferences are reflected by the normalized reward (see the main text for its
definition). Core-Sp and cGAN with post-processing both achieve good nor-
malized rewards.

2.6.2 If-Then Program Synthesis

Datasets and Metrics. The data sets of this experiment are crawled from IFTTT5 and

Zapier6. The statistics of these two data sets are shown in Table 2.1. The IFTTT data

set contains more data samples than the Zapier data set, while the dimensions of the four
5↑https://ifttt.com/
6↑https://zapier.com/

75

https://ifttt.com/
https://zapier.com/

Dataset #train set #val set #test set #quadruple #vocabulary

IFTTT 66761 4148 2640 (111, 443, 88, 161) 4000
Zapier 24454 4809 2576 (1353, 1755, 1333, 1466) 3782

Table 2.1. The IFTTT and Zapier dataset statistics.

labels in the Zapier data set are several times larger than those of the IFTTT data set. The

sentences in the data set are tokenized by Spacy7 library.

To evaluate the performance of different models on this data set, we consider two metrics:

the percentage of valid if-then programs and accuracy. A program is considered as valid if

it satisfies our defined Functionality constraint. The accuracy metric is the percentage

of predicted programs that match exactly in all four fields with those in the test set. This

metric shows the percentage of correctly predicted programs.

Valid Programs Comparison. Core-Sp significantly boosts the percentage of valid

programs generated. In this experiment, we start with evaluating the percentage of valid

programs generated from the state-of-the-art Latent Attention model without the Core-Sp

module. Then we apply the Core-Sp module from Algorithm 1, which iteratively relaxes the

MDDs until we arrive at the exact MDD. The results in Figure 2.15 show the performance

of all the relaxed and the exact Core-Sp modules when added to the Latent Attention

model. Among all programs produced by the Latent Attention model without the Core-

Sp layer, around 88% of them are valid on the two data sets. Once we enforce the exact

Core-Sp capturing the Functionality constraint, all the programs (100%) produced are

valid. We also study the effect of restricting the layer width of MDDs used in Core-Sp. We

use Algorithm 1 to experiment Core-Sp with MDDs generated from width-2 to the largest

width, which is width-111 for IFTTT and width-1353 for Zapier. The percentage of valid

programs on a separate testing set is shown in the blue lines. The performance with the

relaxed Core-Sp increases gradually with the increase of the MDD’s width.

Accuracy Comparison. Figure 2.16 compares the training set and testing set accuracy

for the state-of-the-art Latent Attention model and Core-Sp as the training progresses.

We also collect the results of the Latent Attention model without Core-Sp, the model
7↑https://spacy.io/api/tokenizer

76

https://spacy.io/api/tokenizer

Figure 2.15. Percentage of valid programs and MDD memory consumption
on IFTTT and Zapier datasets. Core-Sp outperforms the state-of-the-art
approach LatentAttention ([42]) in generating valid if-then programs. The
percentages of valid programs generated by Core-Sp embedding MDDs with
different widths are shown for the IFTTT (top left) and Zapier (bottom left)
datasets. Core-Sp model that embeds the exact MDD produces 100% valid
programs on the two datasets. The relaxed and exact MDD for the IFTTT
dataset takes less than 4 MB and for the Zaiper dataset takes less than 20 MB
memory space.

with the best relaxed Core-Sp model (in terms of accuracy), and with the exact Core-Sp

model on the two data sets in Table 2.2. The best relaxed Core-Sp model achieves 1− 2%

higher accuracy than the Latent Attention model and still generates around 11% more valid

programs than the Latent Attention model. Similarly, the model with the exact Core-Sp

module improves approximately 1% in accuracy but generates 100% valid programs.

77

Figure 2.16. The Core-Sp module (red line) brings approximately 1 − 2%
increase in accuracy for the IFTTT data set and 2% increase for the Zapier
data set for the if-then program synthesis task. The LatentAttention model
(blue) is the previous state-of-the-art, which cannot guarantee the validity of
the programs generated.

Table 2.2. The relaxed and exact Core-Sp modules boost the percentage of
valid programs generated and the accuracy for the if-then program synthesis
task on both the IFTTT and the Zapier data sets. Exact Core-Sp produces
100% valid programs while Core-Sp with the best relaxed MDD produced
by the Algorithm 1 leads to the best accuracy in the prediction and close to
100% valid programs.

IFTTT Zapier
Methods Width Accuracy Valid (%) Width Accuracy Valid (%)

LatentAttention N/A 42.17% 87.51% N/A 31.74% 88.00%
Best relaxed Core-Sp 80 44.12% 99.19% 1200 34.28% 99.53%

Exact Core-Sp 111 43.07% 100% 1353 32.83% 100%

78

2.6.3 SQL Query Generation from Natural Language

Dataset and Metrics. Experiments are conducted on the large-scale WikiSQL data

set [70], which contains 80, 654 examples of questions and SQL queries distributed across

24, 241 tables from Wikipedia. We observe that most of the SQL queries are not complex.

In this case, we further select queries within the dataset to form the moderate and the hard

test set. The moderate test set is formed of those queries containing at least one conditional

statement (i.e., “cond-col cond-op cond-val”). Similarly, the hard test set is composed

of those queries that have at least two conditional statements.

The metrics applied for this task are: 1) percentage of valid SQL queries. We evaluate if

the generated queries satisfy the datatype constraint. 2) execution accuracy. A generated

query is considered correct if the returned value of executing the generated SQL query

matches the returned value from the ground truth query. 3) logical accuracy, which evaluates

the percentage of the generated queries which in every field match exactly the ground truth

queries. The implementation is based on SQLNova. We use BERT-base [71] model as the

word embedding. The entire model takes at most 3 days to train for 50 epochs. We choose

the model that achieves the best execution accuracy on the validation data set for both the

baseline and Core-Sp and calculate the corresponding statistics reflected in the table.

Valid SQL Queries Comparison. As shown in Table 2.3, SQLNova with Core-Sp

module embedded generates 100% valid SQL programs, demonstrating 0.7% improvement

over the original SQLNova model on the full testing set. On the moderate testing set, the

improvement increased to 5.7%. On the most difficult hard testing set, the improvement

becomes 16.3%. Due to the fact that a majority of the SQL queries in the full test set have

empty value at cond-op and = value at sel-op, SQLNova has a high probability to predict

prevalent labels in the data set and coincidentally satisfies the SQL grammar. This is the

main reason that our relative improvement is not significant for the full test set.

Execution and Logical Accuracy. Figure 2.17 compares SQLNova and the exact Core-

Sp model over execution and logical accuracy metrics as the training progresses. We also

collect the accuracy of predicting each field in the SQL queries as shown in the table (top)

of Table 2.3. The execution and logical accuracy are shown at the bottom of Table 2.3.

79

Table 2.3. Core-Sp outperforms the previous state-of-the-art SQLNova on
three testing sets in SQL query generation. Core-Sp leads to 100% valid SQL
queries generated and increases in both the execution accuracy and the logical
accuracy compared with SQLNova for the Text2SQL generation task. The top
table shows the accuracy of predicting each field in the SQL queries for both
models.

Accuracy Full test set Moderate test set Hard test set
per component SQLNova Core-Sp SQLNova Core-Sp SQLNova Core-Sp

sel-col 96.3% 96.3% 96.4% 97.0% 96.6% 97.7%
agg-op 89.8% 89.7% 75.7% 77.8% 75.4% 75.8%

#WHERE 98.1% 97.9% 98.5% 98.6% 98.9% 98.5%
cond-col 93.6% 93.6% 94.0% 93.8% 93.6% 93.7%
cond-op 96.7% 96.9% 89.8% 91.6% 84.8% 87.9%

where-val-idx 94.5% 94.8% 89.4% 92.3% 86.7% 87.5%
where-val 94.7% 94.9% 89.3% 92.2% 86.4$ 87.1%

Full test set Moderate test set Hard test set
Overall Accuracy SQLNova Core-Sp SQLNova Core-Sp SQLNova Core-Sp

Logical Accuracy 79.3% 79.9% 61.6% 65.8% 58.3% 62.5%
Execution Accuracy 85.5% 86.1% 75.4% 79.1% 76.1% 78.0%

Valid SQL 99.3% 100.0% 94.3% 100% 83.7% 100%

Core-Sp gains improvement for predicting sel-col, cond-op, where-val-idx and where-

val components. For the rest components in the SQL queries, the difference in accuracy

between Core-Sp and SQLNova is less than 0.4%. In terms of the execution accuracy, the

exact Core-Sp is higher than SQLNova by 0.6%, 3.7%, and 1.9% on the full, moderate, and

hard test sets, correspondingly. In terms of logical accuracy, the exact Core-Sp is higher

than SQLNova by 0.6%, 4.2%, and 4.2% for the three testing sets. The improvement in the

execution and logical accuracy is due to the fact that the Core-Sp module removes invalid

operators during SQL generation and as a consequence reduces the modeling space.

2.7 Summary

In this chapter, we propose Core-Sp, an end-to-end neural module that embeds con-

straint reasoning into machine learning for structured prediction problems. Core-Sp rep-

resents the constraints using decision diagrams and filters out invalid solutions. Core-Sp

80

Figure 2.17. The execution accuracy and logical accuracy over training iter-
ations for both Core-Sp and SQLNova. Core-Sp leads to higher execution
and logical accuracy throughout training iterations.

is then embedded into a neural network which can be trained in an end-to-end fashion.

We demonstrate the effectiveness of Core-Sp on three structured prediction applications

including vehicle dispatching service planning, if-then program synthesis, and Text2SQL gen-

eration. We also propose an iterative search algorithm to find the optimal decision diagram

structure for these applications. We show that the Core-Sp module improves constraint

satisfaction in all three applications. In addition, Core-Sp reduces the modeling space. As

a consequence, neural networks with Core-Sp embedded learn faster and generalize better

than the pure neural network models. For future work, we plan to generalize Core-Sp in

continuous domains and in reinforcement learning.

81

3. Learning Combinatorial Structures via Markov Random Fields

with Sampling through Lovász Local Lemma

3.1 Introduction

In recent years, tremendous progress has been made in generative modeling [72–84].

Learning a generative model involves increasing the divergence in likelihood scores between

the structures in the training set and those structures sampled from the current genera-

tive model distribution. While current approaches have achieved successes in un-structured

domains such as vision or speech, their performance is degraded in the structured domain,

because it is already computationally intractable to search for a valid structure in a combina-

torial space subject to constraints, not to mention sampling, which has a higher complexity.

In fact, when applied in a constrained domain, existing approaches spend most of their train-

ing time manipulating the likelihood of invalid structures, but not learning the difference

between valid structures inside and outside of the training set. In the meantime, tremen-

dous progress has been made in automated reasoning [61, 85–89]. Nevertheless, reasoning

and learning have been growing independently for a long time. Only recently do ideas emerge

exploring the role of reasoning in learning [30–32, 90–92].

The Lovász Local Lemma (LLL) [93] is a classic gem in combinatorics, which at a high

level, states that there exists a positive probability that none of a series of bad events occur,

as long as these events are mostly independent from one another and are not too likely

individually. Recently, [94] came up with an algorithm, which samples from the probability

distribution proven to exist by LLL. [95] proved that the algorithmic-LLL is an unbiased

sampler if those bad events satisfy the so-called “extreme” condition. The expected running

time of the sampler is also shown to be polynomial to the number of bad events. As one

contribution of this chapter, we offer proofs of the two aforementioned results using precise

mathematical notations, clarifying a few descriptions not precisely defined in the original

proof. While this line of research clearly demonstrates the potential of LLL in generative

learning (generating samples that satisfy all hard constraints), it is not clear how to embed

LLL-based samplers into learning and no empirical studies have been performed to evaluate

LLL-based samplers in machine learning.

82

In this chapter, we develop NEural Lovász Sampler (Nelson), which implements the

LLL-based sampler as a fully differentiable neural network. Our Nelson-CD embeds Nel-

son into the contrastive divergence learning process of Markov Random Fields (MRFs).

Embedding an LLL-based sampler allows the contrastive learning algorithm to focus on

learning the difference between the training data and the valid structures drawn from the

current model distribution. Baseline approaches, on the other hand, spend most of their

training time learning to generate valid structures. In addition, Nelson is fully differen-

tiable, hence allowing for efficient learning harnessing the parallelism of GPUs.

Related to our Nelson are neural-based approaches to solve combinatorial optimiza-

tion problems [96–98]. Machine learning is also used to discover better heuristics [99, 100].

Reinforcement learning [101, 102] as well as approaches integrating search with neural net-

works [103] are found to be effective in solving combinatorial optimization problems as well.

Regarding probabilistic inference, there are a rich line of research on MCMC-type sam-

pling [104–106] and various versions of belief propagation [82, 107–109]. SampleSearch [110]

integrates importance sampling with constraint-driven search. Probabilistic inference based

on hashing and randomization obtains probabilistic guarantees for marginal queries and

sampling via querying optimization oracles subject to randomized constraints [111–114].

We experiment Nelson-CD on learning preferences towards (i) random K-satisfiability

solutions (ii) sink-free orientations of un-directed graphs and (iii) vehicle delivery routes. In

all these applications, Nelson-CD (i) has the fastest training time due to seamless integra-

tion into the learning framework (shown in Tables 3.1(a), 3.3(a)). (ii) Nelson generates

samples 100% satisfying constraints (shown in Tables 3.1(b), 3.3(b)), which facilitates effec-

tive contrastive divergence learning. Other baselines either cannot satisfy constraints or time

out. (iii) The fast and valid sample generation allows Nelson to obtain the best learning

performance (shown in Table 3.1(c), 3.2(a,b), 3.3(c,d)).

Our contributions can be summarized as follows: (a) We present Nelson-CD, a con-

trastive divergence learning algorithm for constrained MRFs driven by sampling through

the Lovász Local Lemma (LLL). (b) Our LLL-based sampler (Nelson) is implemented as

a fully differentiable multi-layer neural network module, allowing for end-to-end training

on GPUs. (c) We offer a mathematically sound proof of the sample distribution and the

83

expected running time of the Nelson algorithm. (d) Experimental results reveal the effec-

tiveness of Nelson in (i) learning models with high likelihoods (ii) generating samples 100%

satisfying constraints and (iii) having high time efficiency in training1.

3.2 Preliminaries

Markov Random Fields (MRF) represent a Boltzmann distribution of the discrete vari-

ables X = {Xi}n
i=1 over a Boolean hypercube X = {0, 1}n. For x ∈ X , we have:

Pθ(X = x) = exp (φθ(x))
Z(θ) =

exp
(∑m

j=1 φθ,j(xj)
)

Z(θ) . (3.1)

Here, Z(θ) = ∑
x′∈X exp (φθ(x′)) is the partition function that normalizes the total probability

to 1. The potential function is φθ(x) = ∑m
j=1 φθ,j(xj). Each φθ,j is a factor potential, which

maps a value assignment over a subset of variables Xj ⊆ X to a real number. We use upper

case letters, such as Xj to represent (a set of) random variables, and use lower case letters,

such as xj, to represent its value assignment. We also use var(φθ,j) to represent the domain

of φθ,j, i.e., var(φθ,j) = Xj. θ are the parameters to learn.

Constrained MRF is the MRF model subject to a set of hard constraints C = {c1, c2, . . . , cL}.

Here, each constraint cj limits the value assignments of a subset of variables var(cj) ⊆ X.

We write cj(x) = 1 if the assignment x satisfies the constraint cj and 0 otherwise. Note that

x is an assignment to all random variables, but cj only depends on variables var(cj). We

denote C(x) = ∏L
j=1 cj(x) as the indicator function. Clearly, C(x) = 1 if all constraints are

satisfied and 0 otherwise. The constrained MRF is:

Pθ(X = x|C) = exp (φθ(x)) C(x)
ZC(θ) , (3.2)

where the partition function ZC(θ) = ∑
x′∈X exp (φθ(x)) C(x) sums over only valid assign-

ments.

Learn Constrained MRF Given a data set D = {xk}N
k=1, where each xk is a valid as-

signment that satisfies all constraints, learning can be achieved via maximal likelihood es-
1↑Code is at: https://github.com/jiangnanhugo/nelson-cd

84

https://github.com/jiangnanhugo/nelson-cd

timation. In other words, we find the optimal parameters θ∗ by minimizing the negative

log-likelihood `C(θ):

`C(θ) = − 1
N

N∑
k=1

log Pθ(X = xk|C)

= − 1
N

N∑
k=1

φθ(xk) + log ZC(θ).
(3.3)

The parameters θ can be trained using gradient-based optimization algorithm: θt+1 = θt −

η∇`C(θ), where η is the learning rate. Let ∇`C(θ) denotes the gradient of the objective `C(θ),

that is calculated as:

∇`C(θ) = − 1
N

N∑
k=1
∇φθ(xk) +∇ log ZC(θ)

= −Ex∼D [∇φθ(x)] + Ex̃∼Pθ(x|C) [∇φθ(x̃)] .

(3.4)

The first term is the expectation over all data in training set D. During training, this is ap-

proximated using a mini-batch of data randomly drawn from the training set D. The second

term is the expectation over the current model distribution Pθ(X = x|C) (detailed in Ap-

pendix C.2). Because learning is achieved following the directions given by the divergence

of two expectations, this type of learning is commonly known as contrastive divergence

(CD) [72]. Estimating the second expectation is the bottleneck of training because it is

computationally intractable to sample from this distribution subject to combinatorial con-

straints. Our approach, Nelson, leverages the sampling through Lovász Local Lemma to

approximate the second term.

Factor Potential in Single Variable Form Our method requires each factor potential

φθ,j(xj) in Equation (3.1) to involve only one variable. This is NOT an issue as all constrained

MRF models can be re-written in single variable form by introducing additional variables

and constraints. Our transformation follows the idea in [89]. We illustrate the idea by

transforming one-factor potential φθ,j(xj) into the single variable form. First, notice all

functions including φθ,j(xj) over a Boolean hypercube {0, 1}n have a (unique) discrete Fourier

expansion:

φθ,j(xj) =
∑

S∈[var(φθ,j)]
φ̂θ,j,S χS(x). (3.5)

85

Here χS(x) = ∏
Xi∈S Xi is the basis function and φ̂θ,j,S are Fourier coefficients. [var(φθ,j)]

denotes the power set of var(φθ,j). For example, if var(φθ,j) = {X1, X2}, then [var(φθ,j)] =

{∅, {X1}, {X2}, {X1, X2}}. See [115] for details of Fourier transformation. To transform

φθ,j(xj) into single variable form, we introduce a new Boolean variable χ̂S for every χS(x).

Because χ̂S and all Xi’s are Boolean, we can use combinatorial constraints to guarantee

χ̂S = ∏
Xi∈S Xi. These constraints are incorporated into C. Afterward, φθ,j(xj) is represented

as the sum of several single-variable factors. Notice this transformation is only possible when

the MRF is subject to constraints. We offer a detailed example in Appendix A.3.1 for further

explanation. Equipped with this transformation, we assume all φθ,j(xj) are single variable

factors for the rest of the chapter.

Extreme Condition The set of constraints C is called “extremal” if no variable assignment

violates two constraints sharing variables, according to [95].

Condition 3.2.1. A set of constraints C is called extremal if and only if for each pair of

constraints ci, cj ∈ C, either of the following two cases should be met:

• their domain variables do not intersect, i.e., var(ci) ∩ var(cj) = ∅.

• their domain variables intersect and both of them cannot be violated simultaneously

for all x ∈ X .

3.3 Sampling through Lovász Local Lemma

Lovász Local Lemma (LLL) [93] is a fundamental method in combinatorics to show

the existence of a valid instance that avoids all the bad events, if the occurrences of these

events are “mostly” independent and are not very likely to happen individually. Since the

occurrence of a bad event is equivalent to the violation of a constraint, we can use the

LLL-based sampler to sample from the space of constrained MRFs. To illustrate the idea of

LLL-based sampling, we assume the constrained MRF model is given in the single variable

form (as discussed in the previous section):

Pθ(X = x|C) = exp (∑n
i=1 θixi) C(x)
ZC(θ) , (3.6)

86

Algorithm 2: Sampling Through Lovász Local Lemma.
Input: Random variables X = {Xi}n

i=1; Constraints C = {cj}L
j=1; Parameters of the

constrained MRF θ.
Output: Sample x drawn from Pθ(X = x|C).

1 xi ∼ exp(θixi)∑
xi∈{0,1} exp(θixi)

, for 1 ≤ i ≤ n ; // initialize

2 while C(x) = 0 do
3 Find all violated constraints S ⊆ C in x.
4 xk∼ exp(θkxk)∑

xk∈{0,1}
exp(θkxk) , for xk ∈ var(S) ; // resample

5 Return A valid sample x drawn from Pθ(X = x|C).

where ZC(θ) = ∑
x′∈X exp (∑n

i=1 θixi) C(x).

As shown in Algorithm 2, the LLL-based sampler [95] takes the random variables X =

{Xi}n
i=1, the parameters of constrained MRF θ, and constraints C = {cj}L

j=1 that satisfy

Condition 3.2.1 as the inputs. In Line 1 of Algorithm 2, the sampler gives an initial random

assignment of each variable following its marginal probability: xi ∼ exp(θixi)∑
xi∈{0,1} exp(θixi)

, for

1 ≤ i ≤ n. Here we mean that xi is chosen with probability mass exp(θixi)∑
xi∈{0,1} exp(θixi)

. Line

2 of Algorithm 2 checks if the current assignment satisfies all constraints in C. If so, the

algorithm terminates. Otherwise, the algorithm finds the set of violated constraints S =

{cj|cj(x) = 0, cj ∈ C} and re-samples related variables Xk ∈ var(S) using the same marginal

probability, i.e., xk ∼ exp(θkxk)∑
xk∈{0,1} exp(θkxk) . Here var(S) = ∪cj∈S var(cj) is the set of variables

that appeared in all violated clauses. The algorithm repeatedly samples all those random

variables violating constraints until all the constraints are satisfied.

Under Condition 3.2.1, Algorithm 2 guarantees each sample is from the constrained

MRFs’ distribution Pθ(X = x|C) (in Theorem 3.3.1). In Appendix A.1, we present the

detailed proof and clarify the difference to the original descriptive proof [95].

Theorem 3.3.1 (Probability Distribution). Given random variables X = {Xi}n
i=1, con-

straints C = {cj}L
j=1 that satisfy Condition 3.2.1, and the parameters of the constrained MRF

in the single variable form θ. Upon termination, Algorithm 2 outputs an assignment x that

is randomly drawn from the constrained MRF distribution: x ∼ Pθ(X = x|C).

87

Sketch of Proof. We first show that in the last round, the probability of obtaining two pos-

sible assignments conditioning on all previous rounds in Algorithm 2 has the same ratio as

the probability of those two assignments under distribution Pθ(X = x|C). Then we show

when Algorithm 2 ends, the set of all possible outputs is equal to the domain of non-zero

probabilities of Pθ(X = x|C). Thus we conclude the execution of Algorithm 2 produces a

sample from Pθ(X = x|C) because of the identical domain and the match of probability

ratios of any two valid assignments.

The expected running time of Algorithm 2 is determined by the number of rounds of

re-sampling. In the uniform case that θ1 = . . . = θn, the running time is linear in the size of

the constraints O(L). The running time for the weighted case has a closed form. We leave

the details in Appendix A.1.

3.4 Neural Lovász Sampler

We propose Neural Lovász Sampler (Nelson) that implements LLL-based sampling as a

neural network that draws multiple samples in parallel with the computing power of GPUs.

We then demonstrate how Nelson is embedded in CD-based learning for constrained MRFs.

3.4.1 Neural Lovász Sampler (Nelson)

Represent Constraints as CNF Nelson obtains samples from the constrained MRF

model in single variable form, as shown in Equation 3.6. To simplify notations, let Pθ(Xi =

xi) = exp(θixi)∑
xi∈{0,1} exp(θixi)

. Since our constrained MRF model is defined on the Boolean hyper-

cube {0, 1}n, we assume all constraints {cj}L
j=1 are given in the Conjunctive Normal Form

(CNF). Note that all propositional logic can be reformulated in CNF format with at most

a polynomial-size increase. A formula represented in CNF is a conjunction (noted as ∧) of

clauses. A clause is a disjunction (noted as ∨) of literals, and a literal is either a variable

or its negation (¬). Mathematically, we use cj to denote a clause and use lj,k to denote a

literal. In this case, a CNF formula would be:

c1 ∧ . . . ∧ cL, where cj = lj,1 ∨ . . . ∨ lj,K (3.7)

88

A clause is true if and only if at least one of the literals in the clause is true. The whole

CNF is true if all clauses are true.

We transform each step of Algorithm 2 into arithmetic operations, hence encoding it as

a multi-layer neural network. To do that, we first need to define a few notations:

• Vector of assignment xt = (xt
1, . . . , xt

n), where xt
i is the assignment of variable Xi in the

t-th round of Algorithm 2. xt
i = 1 denotes variable Xi takes value 1 (or true).

• Vector of marginal probabilities P = (P1, . . . , Pn), where Pi is the probability of variable

Xi taking value 0 (false): Pi = Pθ(Xi = 0) = exp(0)/(exp(0) + exp(θi)).

• Tensor W ∈ {−1, 0, 1}L×K×n and matrix b ∈ {0, 1}L×n, that are used for checking con-

straint satisfaction:

Wjki =



1 if k-th literal of clause cj is Xi,

−1 if k-th literal of clause cj is ¬Xi,

0 otherwise.

(3.8)

bjk =


1 if k-th literal of clause cj is negated,

0 otherwise.

(3.9)

• Matrix V ∈ {0, 1}L×n, denoting the mapping from clauses to variables in the CNF form

for constraints C:

Vji=


1 if clause cj contains a literal involving Xi

0 otherwise.

(3.10)

• Vector of resampling indicators At, where At
i = 1 indicates variable Xi needs to be

resampled at round t.

Given these defined variables, we represent each step of Algorithm 2 using arithmetic oper-

ations as follows:

89

Initialization To complete line 1 of Algorithm 2, given the marginal probability vector P ,

the first step is sampling an initial assignment of X, x1 = (x1
1, . . . , x1

n). It is accomplished

by:

x1
i =


1 if ui > Pi,

0 otherwise.

for 1 ≤ i ≤ n, (3.11)

Here ui is sampled from the uniform distribution in [0, 1].

Check Constraint Satisfaction To complete line 2 of Algorithm 2, given an assignment

xt at round t ≥ 1, tensor W and matrix b, we compute Zt as follows:

Zt = W ~ xt + b, (3.12)

where ~ represents a special multiplication between tensor and vector: (W~x)jk = ∑n
i=1 Wjkix

t
i.

Note that Zt
jk = 1 indicates the k-th literal of j-th clause is true (takes value 1). Hence, we

compute St
j as:

St
j = 1− max

1≤k≤K
Zjk, for 1 ≤ j ≤ L. (3.13)

Here St
j = 1 indicates xt violates j-th clause. We check ∑L

j=1 St
j 6= 0 to see if any clause is

violated, which corresponds to C(x) = 0 and is the continuation criteria of the while loop.

Extract Variables in Violated Clauses. To complete line 3 of Algorithm 2, we extract

all the variables that require resampling based on vector St computed from the last step.

The vector of resampling indicator At can be computed as:

At
i = 1

 L∑
j=1

St
jVji ≥ 1

 , for 1 ≤ i ≤ n (3.14)

where ∑L
j=1 St

jVji ≥ 1 implies Xi requires resampling.

90

Resample To complete line 4 of Algorithm 2, given the marginal probability vector P ,

resample indicator vector At and assignment xt, we draw a new random sample xt+1. This

can be done using this update rule:

xt+1
i =


(1− At

i)xt
i + At

i if ui > Pi,

(1− At
i)xt

i otherwise.

for 1 ≤ i ≤ n (3.15)

Again, ui is drawn from the uniform distribution in [0, 1]. Drawing multiple assignments

in parallel is attained by extending xt with a new dimension (See implementation in Ap-

pendix A.4.1). Example 3.4.1 shows the detailed steps of Nelson (See more examples in

Appendix A.1.5).

Example 3.4.1. Assume we have random variables X1, X2, X3 with n = 3, Constraints

C = (X1 ∨X2) ∧ (¬X1 ∨X3) in the CNF form with L = 2, K = 2. Tensor W is:

W=

w11=[w111, w112, w113], w12=[w121, w122, w123]

w21=[w211, w212, w213], w22=[w221, w222, w223]

 ,

w11 =
[
1 0 0

]
, w12 =

[
0, 1, 0

]
, w21 =

[
−1, 0, 0

]
, w22 =

[
0, 0, 1

]
.

Note that w111 = 1 means X1 is the 1st literal in the 1st clause and w211 = −1 means ¬X1

is the 1st literal in the 2nd clause. Matrix b and the mapping matrix V are:

b =

0 0

1 0

 , V =

1 1 0

1 0 1

 ,

b21 = 1 indicates the 1st literal in the 2nd clause is negated. For the mapping matrix,

V11 = V12 = 1 implies the 1st clause contains X1 and X2. For t = 1, suppose we have an

91

initialized assignment x1 = [0 0 1]>, meaning X1 = X2 = 0, X3 = 1. The intermediate

results of Z1, S1, A1 become:

Z1 =

0 0

1 1

 , S1 =

1

0

 , A1 =


1

1

0

 ,

where S1
1 = 1 implies the 1st clause is violated. A1

1 = A1
2 = 1 denotes variables X1, X2

require resampling.

Algorithm 3: Learn Constrained MRFs via Nelson-CD.
Input: Training set D; constraints C; parameters θ of constrained MRF; #samples

m; epochs T ; learning rate η.

1 Build (W, b, V) from C as in Equations. (3.8), (3.9), (3.10);

2 for t = 1 to T do

3 {x̃j}m
j=1 ← Nelson(W, b, V, θt, m) ; // Sample from Pθt(X = x|C)

4 {xj}m
j=1 ∼ D ; // Sample from training data

5 gt = 1
m

∑m
j=1∇φ(xj)− 1

m

∑m
j=1∇φ(x̃j); // Compute divergence

6 θt+1 ← θt − ηgt ; // Update parameters

7 return The converged model θT .

3.4.2 Contrastive Divergence-based Learning

The whole learning procedure is shown in Algorithm 3. At every learning iteration, we

call Nelson to draw assignments {x̃j}m
j=1 from constrained MRF’s distribution Pθ(X|C).

Then we pick m data points at random from the training set {xj}m
j=1 ∼ D. The divergence

gt in line 5 of Algorithm 3 is an estimation of ∇`C(θ) in Equation (3.4). Afterward, the

MRFs’ parameters are updated, according to line 6 of Algorithm 3. After Tmax learning

iterations, the algorithm outputs the constrained MRF model with parameters θTmax .

92

3.5 Related Work

Results related to the proposed Nelson method for solving combinatorial optimization

problems are mainly neural-based approaches [96–98]. Machine learning is also used to

discover better heuristics for finding solutions [99, 100]. Reinforcement learning [101, 102]

as well as approaches integrating search with neural nets [103] are found to be effective in

solving combinatorial optimization problems as well.

Regarding probabilistic inference, there is a rich line of research on MCMC-type sam-

pling [104–106] and various versions of belief propagation [107–109]. SampleSearch [110]

integrates importance sampling with constraint-driven search. Probabilistic inference based

on hashing and randomization obtains probabilistic guarantees for marginal queries and sam-

pling via querying optimization oracles subject to randomized constraints [111, 112, 114].

3.6 Experiments

We show the efficiency of the proposed Nelson algorithm on learning MRFs defined

on the solutions of three combinatorial problems. In all three application domains, we

demonstrate that Nelson outperforms baselines on learning performance, i.e., generating

structures with high likelihoods and MAP@10 scores (Table 3.2(a,b), 3.3(c,d), 3.1(c)). Nel-

son also generates samples which 100% satisfy constraints (Tables 3.1(b), 3.3(b)). Finally,

Nelson is the most efficient sampler. Baselines either time out or cannot generate valid

structures (Tables 3.1(a), 3.3(a)).

3.6.1 Learn Random K-SAT Solutions with Preference

Table 3.1 shows the proposed Nelson is an efficient sampler that generates valid assign-

ments. Equipped with Nelson sampler, Table 3.2 demonstrates that the constrained MRF

learns to generate K-SAT solutions that closely resemble those in the training set.

Task Definition. The task is to learn to generate solutions to a K-SAT problem. We are

given a training set D containing solutions to a corresponding CNF formula c1 ∧ . . . ∧ cL.

Note not all solutions are equally likely presented in D. The learning task is to maximize

93

the log-likelihood of the assignments seen in the training set D. Once learning is completed,

the inference task is to generate valid solutions that closely resemble those in D [116].

Dataset. We consider several benchmark datasets of different problem sizes characterized

by the number of variables generated by CNFGen [117]. To generate the training set D, we

use the Glucose4 solver from PySAT to sample solutions.

Baselines We compare Nelson with other contrastive divergence learning algorithms equipped

with other sampling approaches. In terms of baseline samplers, we consider:

• Gibbs sampler [118], a special case of MCMC that is widely used in training MRF

models.

• Weighted SAT samplers, including WAPS [119], WeightGen [120] and XOR sam-

pler [121, 122].

• Uniform SAT samplers, including CMSGen [123], QuickSampler [124], UniGen [125]

and KUS [126]. Notice these samplers cannot sample SAT solutions from a non-uniform

distribution. We include them in the learning experiments as a comparison and exclude

them in the weighted sampling experiment (Figure 3.2).

Currently, there are only GPU-based SAT solvers [127] and model counter [128], GPU-

based SAT sampler is not available by far.

Metrics. In terms of evaluation metrics, we consider

• Training time per epoch: the average time for every learning method to finish one epoch.

• Validness of Variables Assignments: the percentage of generated solutions that satisfy the

given SAT formula.

• Mean averaged Precision (MAP@10): the percentage that the solutions in the training

set D reside among the top-10 most likely models. The higher the MAP@10 scores, the

better the model generates structures closely resembling those in the training set.

• log-likelihood of the solutions in the training set D: The model that attains the highest

log-likelihood learns the closest distribution to the training set.

94

Table 3.1. Sampling efficiency and accuracy for learning K-SAT solutions
with preferences. The proposed Nelson is the most efficient (see Training
Time Per Epoch) and always generates valid assignments (see Validness) with
a small approximation error (see Approximation Error of Gradient) against all
baselines. T.O. means time out. and QS stands for the Quicksampler.

Problem (a) Training Time Per Epoch (Mins) (↓)
size Nelson XOR WAPS WeightGen CMSGen KUS QS Unigen Gibbs
10 0.13 26.30 1.75 0.64 0.22 0.72 0.40 0.66 0.86
20 0.15 134.50 3.04 T.O. 0.26 0.90 0.30 2.12 1.72
30 0.19 1102.95 6.62 T.O. 0.28 2.24 0.32 4.72 2.77
40 0.23 T.O. 33.70 T.O. 0.31 19.77 0.39 9.38 3.93
50 0.24 T.O. 909.18 T.O. 0.33 1532.22 0.37 13.29 5.27

500 5.99 T.O. T.O. T.O. 34.17 T.O. T.O. T.O. 221.83
1000 34.01 T.O. T.O. T.O. 177.39 T.O. T.O. T.O. 854.59

(b) Validness of Variables Assignments (%) (↑)
10− 50 100 100 100 100 100 100 82.65 100 90.58

500 100 T.O. T.O. T.O. 100 T.O. 7.42 100 54.27
1000 100 T.O. T.O. T.O. 100 T.O. 0.00 100 33.91

(c) Approximation Error of Gradient (↓)
10 0.10 0.21 0.12 3.58 3.96 4.08 3.93 4.16 0.69
12 0.14 0.19 0.16 5.58 5.50 5.49 5.55 5.48 0.75
14 0.15 0.25 0.19 T.O. 6.55 6.24 7.79 6.34 1.30
16 0.16 0.25 0.15 T.O. 9.08 9.05 9.35 9.03 1.67
18 0.18 0.30 0.23 T.O. 10.44 10.30 11.73 10.20 1.90

• Approximation Error of Gradient: the L1 distance between the exact gradient of log ZC(θ)

in Equation (3.4) and the approximations given by the sampler.

Please refer to Section A.4 for detailed experiment settings: hyper-parameter settings, im-

plementation of the Nelson algorithm, and detailed definitions of all the metrics.

Efficiency and accuracy benchmark of all samplers. In Table 3.1, we compare all avail-

able samplers in terms of sampling efficiency for learning constrained MRF, approximation

error for the gradient, and validness of the generated assignments. In Table 3.1(a), Nelson

takes much less time for sampling against all the samplers and can train the model with the

dataset of problem size 1000 within an hour. In Table 3.1(b), Nelson always generate valid

samples. QuickSampler and Gibbs methods’ performance decreases when the problem size

becomes larger. In Table 3.1(c), Nelson, XOR, and WAPS are the three algorithms that

95

Table 3.2. The quality of learning outcomes for learning random K-SAT
solutions with preferences. Nelson achieves the best likelihood and MAP@10
scores. T.O. is time out.

(a) Log-likelihood (↑)

Nelson (ours) Gibbs CMSGen
Quicksampler, WeightGen,

Problem size KUS, XOR, WAPS

100 −49.16 −36.36 −60.12

T.O.
300 −52.61 −53.11 −128.39
500 −196.47 −197.21 −272.49
700 −238.60 −238.75 −389.44

1000 −294.22 −296.33 −532.85

(b) MAP@10 (%) (↑)
100 82.13 83.32 86.34

T.O.
300 66.37 64.42 64.50
500 90.03 73.14 70.67
700 69.74 69.74 48.10

1000 91.70 77.56 78.72

can effectively estimate the gradient while the other algorithms incur huge estimation errors.

Also, the other two methods are much slower than Nelson.

We also evaluated the samplers’ efficiency in isolation (not embedded in learning). The

sampling cases we considered are uniform and weighted (mainly following the experiment

setting in [129]). In weighted sampling, the weights are specified by fixed values to the single

factors in Equation (3.6). In the uniform sampling case in Figure 3.1, Nelson and Quick-

sampler require much less time to draw samples compared to other approaches. However,

the solutions generated by Quicksampler rarely satisfy constraints. In the weighted sampling

case in Figure 3.2, Nelson scales better than all the competing samplers as the sizes of the

K-SAT problems increase.

Learning Quality Comparisons. In Table 3.2, we compare the learned model by mea-

suring the log-likelihood and MAP@10 scores. Note that baselines including Quicksampler,

Weightgen, KUS, XOR, and WAPS timed out for the problem sizes we considered. Com-

pared with the remaining algorithms, Nelson attains the best log-likelihood and MAP@10

metric.

96

10.0 12.5 15.0 17.5 20.0
Problem size of Random K-SAT

100

101

102

E
m

p
ir

ic
al

R
u

n
n

in
g

T
im

e
(s

)

Nelson (ours)

CMSGen

QuickSampler

UniGen

KUS

101 102 103

Problem size of Random K-SAT

0%

20%

40%

60%

80%

100%

Va
lid

 A
ss

ig
nm

en
t (

%
)

Nelson (ours)
CMSGen
QuickSampler
UniGen
KUS

Figure 3.1. Empirical running time and the percentage of valid structures
sampled uniformly at random from solutions of K-SAT problems. Nelson
always generates valid solutions and is the most efficient sampler.

101 102 103

Problem size of Random K-SAT

10 2

100

102

104
Weighted Sampling

Nelson (ours)
WAPS
WeightGen
XORSampling

102 103

50%

100%

Va
lid

ne
ss

 (%
)

Nelson (ours)
Gibbs

101 102 103

Problem Size of Random K-SAT

2

4

6

of

 R
es

am
pl

es
Nelson (ours)

Figure 3.2. Empirical running time, the percentage of valid solutions gen-
erated, and the number of resample steps for weighted sample generation of
K-SAT solutions. Nelson scales the best among all approaches and always
generates valid solutions.

3.6.2 Sink-Free Orientation in Undirected Graphs

Task Definition & Dataset A sink-free orientation of an undirected graph is a choice of

orientation for each arc such that every vertex has at least one outgoing arc [130]. This

task has wide applications in robotics routing and IoT network configuration [131]. Even

though finding a sink-free orientation is tractable, sampling a sink-free orientation from the

97

Table 3.3. Sample efficiency and learning performance of the sink-free orien-
tation task. Nelson is the most efficient (see Training Time Per Epoch) and
always generates valid assignments (see Validness), has the smallest error ap-
proximating gradients, and has the best learning performance (see MAP@10)
among all approaches.

(a) Training Time Per Epoch (Mins) (↓)
Problem size Nelson (ours) GibbsSampler CMSGen

10 0.53 9.85 0.69
20 0.53 80.12 1.93
30 0.72 256.38 3.65
40 0.93 777.01 5.99
50 1.17 T.O. 9.08
60 1.40 T.O. 13.19
70 1.65 T.O. 17.90
80 1.93 T.O. 23.98
90 2.18 T.O. 29.49
100 2.45 T.O. 38.04

(b) Validness of Predicted Variables Assignments (%) (↑)
7 100 50.16 100
8 100 64.63 100
9 100 47.20 100
10 100 62.60 100
11 100 84.95 100
12 100 85.24 100
13 100 87.28 100
14 100 90.51 100
15 100 93.27 100

(c) Approximation Error of Gradient (↓)
5 0.01 0.09 0.21
6 0.06 0.08 3.26
7 0.05 0.08 2.37
8 0.03 0.11 2.37
9 0.04 0.17 8.62
10 0.05 0.28 11.27

(d) MAP@10 (%) (↑)
10 61.14 60.01 64.56
20 55.26 55.20 47.79
30 100.00 96.29 100.00
40 40.01 39.88 38.90
50 46.12 T.O. 42.11

98

space of all orientations is still #P-hard. Given a training set of preferred orientations D

for the graph, the learning task is to maximize the log-likelihood of the orientations seen in

the training set. The inference task is to generate valid orientations that resemble those in

the training set. To generate the training set, we use the Erdős-Rényi random graph from

the NetworkX2 library. The problem size is characterized by the number of vertices in the

graph. The baselines we consider are CD-based learning with Gibbs sampling and CMSGen.

Learning Quality In Table 3.3(a), we show the proposed Nelson method takes much

less time to train MRF for one epoch than the competing approaches. Furthermore, in

Table 3.3(b), Nelson and CMSGen generate 100% valid orientations of the graph while the

Gibbs-based model does not. Note the constraints for this task satisfy Condition 3.2.1, hence

Nelson sampler’s performance is guaranteed by Theorem 3.3.1. In Table 3.3(c), Nelson

attains the smallest approximation error for the gradient (in Equation 3.4) compared to

baselines. Finally, Nelson learns a higher MAP@10 than CMSGen. The Gibbs-based

approach times out for problem sizes larger than 40. In summary, our Nelson is the best-

performing algorithm for this task.

3.6.3 Learn Vehicle Delivery Routes

Task Definition & Dataset Given a set of locations to visit, the task is to generate a

sequence to visit these locations in which each location is visited once and only once and

the sequence closely resembles the trend presented in the training data. The training data

are such routes collected in the past. The dataset is constructed from TSPLIB, which

consists of 29 cities in Bavaria, Germany. The constraints for this problem do not satisfy

Condition 3.2.1. We still apply the proposed method to evaluate if the Nelson algorithm

can handle those general hard constraints.

In Figure 3.3, we see Nelson can obtain samples of this delivery problem efficiently.

We measure the number of resamples taken as well as the corresponding time used by the

Nelson method. Nelson takes roughly 50 times of resamples with an average time of 0.3

seconds to draw a batch (the batch size is 100) of valid visiting sequences.
2↑https://networkx.org/

99

https://networkx.org/

0 50 100 150 200 250 300
Number of resamples

0

200

400

600

800

C
ou

n
t

Nelson (ours)

0.25 0.50 0.75 1.00 1.25 1.50

Time used by sampler (millisecond)

0

200

400

600

C
ou

n
t

Nelson (ours)

Figure 3.3. Frequency histograms for the number of resample and the to-
tal time of Nelson method for uniformly sampling visiting paths for vehicle
routing problem.

3.7 Summary

In this chapter, we present Nelson, which embeds a sampler based on Lovász Local

Lemma into the contrastive divergence learning of Markov random fields. The embedding

is fully differentiable. This approach allows us to learn generative models over constrained

domains, which presents significant challenges to other state-of-the-art models. We also give

sound proofs of the performance of the LLL-based sampler. Experimental results on several

real-world domains reveal that Nelson learns to generate 100% valid structures, while

baselines either time out or cannot generate valid structures. Nelson also outperforms

other approaches in the running times and in various learning metrics.

100

4. Controllable Language Generation via Combinatorial

Constraint Satisfaction: A Tree Search Enhanced Monte-Carlo

Approach

4.1 Introduction

Supervised techniques still dominate in natural language generation tasks. Despite its

success, supervised approaches need to be trained with massive datasets of input-output

pairs, which is non-trivial to acquire. In addition, it is hard to guarantee that the out-

put sentences satisfy constraints. Recent approaches first pre-train a language model on a

general-purpose dataset, then fine-tune the neural net on a task-specific dataset [132, 133].

These approaches partially mitigate data hunger in training large neural networks. Never-

theless, they still require carefully crafted datasets for fine-tuning1.

We present a combinatorial constraint satisfaction approach for language generation. In

particular, we sample sentences that attain high likelihoods from a language model and sat-

isfy task-specific constraints. Sampling sentences that attain high likelihood in the language

model ensures the sentence quality. Constraints guarantee that the sentences fit the specific

language task. The constraints can be hard ones such as the grammar rules, or soft ones

such as attaining positive sentiment scores.

Our method harnesses constraint satisfaction, rather than learning, to guide language

generation. In fact, there is no task-specific training in our approach. Our approach is

highly flexible since constraints can be switched quickly to be adapted to a different task, even

faster than fine-tuning. It also allows us to leverage the latest developments in automated

reasoning for language generation. Although the field of language generation is dominated by

learning, reasoning should play an equally important role. Human beings can write beautiful

words from reasoning over what is needed in the specific writing task, without learning from

previous examples.
1↑I collaborate with Maosen Zhang as the second author for this work. This chapter contains sections taken
from [2], which Maosen has never used for use of any degree. I’ve rewritten this chapter and highlighted my
individual contributions.

101

1

3

3

Sentence edit space

Pr
ob

ab
ili

ty
 π

(x
)

Paris is located in France.
Paris is located in France.
Is Paris located in France?

: Deletion

TSMC
1

CGMH

2

3

Rejected

Accepted

Hard/soft constraints

Pretrained LM Sampling
Output
sentence

guide

NLG via Constraint Satisfaction

New input

Input-output
dataset

Supervised
training

Output
sentence

Supervised

(a) (b)

Trained
neural net

Figure 4.1. (a) Language generation via supervised method and constraint
satisfaction. (b) Our TSMH traverses the probabilistic space of high-quality
sentences more effectively than the baseline CGMH. “R, I, D” means replace,
insert, and delete operations.

To better handle the combinatorial constraints, a tree search is embedded into the pro-

posal process of the Markov chain Monte Carlo (MCMC) for constrained language generation,

which suggests candidate proposals that satisfy more constraints. Our approach is motivated

by Sample-Search [110, 134, 135], which integrates backtrack search into importance sam-

pling. Making multiple word-level changes within one proposal step of MCMC allows the

direct transition between legitimate sentences, while previous approaches must go through

infeasible intermediate states. Such moves are typically rejected by MCMC and therefore

result in a slow mixing rate (See Figure 4.1(b)).

In literature, constrained language generation has been attacked in a supervised way

in [136–140]. There are also various works which model language rules as decomposed tree

structures [141] or sentiment tags [142]. Markov Logic network [143, 144] is also used to

formulate grammar rules. The Euclidean distance in semantic space is considered as soft

constraints in [48, 145, 146].

To summarize, our contributions are: 1) We define the problem of constraint satisfaction-

driven natural language generation, and propose a sampling-based approach to tackle the

problem with combinatorial constraints. 2) We propose a Tree Search enhanced Metropolis

Hastings (TSMH) framework, which mixes faster than standard MCMC in the presence

of combinatorial constraints. 3) Experiment results on generating interrogative, imperative

102

sentences with keywords, and sentences with given sentiments demonstrate that our TSMH

is able to generate sentences that satisfy more hard and soft constraints as well as retain

good fluency.

4.2 Language Generation via Combinatorial Constraint Satisfaction

We provide a general framework for the constrained natural language generation. In

this framework, sentences are generated by sampling from a probability distribution that

is proportional to the score of a pre-trained language model times the constraint score.

Formally, let π(x) be the probability that sentence x is sampled, it should be propositional

to:

π(x) ∝ PLM(x) · Constraint(x). (4.1)

Here, PLM(x) is the score of a language model [133, 147], which measures the quality of

sentence x. Higher PLM(x) means the sentence x is better in quality. Constraint(x) is a

task-specific penalty term, which are composed of hard and soft constraint terms:

Constraint(x) = Φhard(x) · Φsoft(x). (4.2)

Both the hard constraint score Φhard(x) and the soft constraint score Φsoft(x) are float

values ranging from 0 to 1. The closer to 1, the more satisfied the constraints are.

Unlike supervised methods which require training with massive data, our framework can

solve language generation tasks with no task-specific training. PLM(x) comes from a general

language model, only trained on general-purpose language tasks. There is no fine-tuning of

PLM(x) on the specific task. Φhard(x) is based on crafted hard constraints. Φsoft(x) comes

from either user-defined functions or pre-trained neural networks, which again are not fine-

tuned on the specific task. The overall formulation is composed of the language model and

the task-specific constraints. It allows us to sample sentences which are close to natural

language while satisfying constraints.

103

4.2.1 Constraint Formulation

Hard Constraints. The hard constraint score of sentence x is computed as: Φhard(x) =

βM−
∑

i
ci(x), where β ∈ [0, 1]. ci(x) is an indicator variable that takes 1 if the sentence

x satisfies the i-th constraint, and M is the total number of hard constraints. We use

propositional logic to define ci(x). Given a sentence x with length m, let wV
i ∈ {1, 0} be an

indicator variable that the i-th word in the sentence is in category V .

For example, given a keyword K, we can enforce its existence in the sentence by: c(x) =

w[K]
1 ∨ w[K]

2 · · · ∨ w[K]
m . Here [K] is a set containing the keyword K.

Furthermore, we enforce the sentence type to be imperative by: c(x) = w[VERB]
1 ∨(w[ADV]

1 ∧

w[VERB]
2) where the first word in the sentence should be either a verb: w[VERB]

1 or an adverb

followed by a verb: w[ADV]
1 ∧ w[VERB]

2 . The [VERB] and [ADV] represent the set of verbs and

adverbs accordingly.

After defining every hard constraint, to efficiently evaluate if the sentence preserves all

the constraints, we use template to represent a set of sentences where each word is ei-

ther given or specified by a word category. We use the number of hard constraints a sen-

tence satisfies at the template level to reduce the search tree size. For example, a template

[[K],[AUX],[OTH],[OTH]] represent a series of sentences that the first word is the keyword

K, the second word is an auxiliary verb and the last two words are the other words.

Soft Constraints. A soft constraint assigns a float value between 0 and 1 to indicate the

constraint satisfaction degree. Soft constraint Φsoft(x) can be derived quite flexibly, either

from a user-defined function or a pre-trained neural network. For example, to ensure two

sentences are semantically similar, the soft constraint can be the cosine similarity of their

sentence vectors. Furthermore, to ensure the sentences generated with specific sentiment,

the soft constraint can be the score of a sentiment analysis neural network, representing

whether the sentence has the requested sentiment.

4.3 Tree Search Enhanced MCMC

Markov chain Monte Carlo (MCMC) is a classical approach to sample sentences from

probability distribution π(x) as defined in Equation (4.1). Starting from one sentence x,

104

Paris is located in France.

Paris located in France.

R

I

D

Paris is located in France.

Is Paris located in France?

R I D

R

I

D

What is loctated in France?
R

I
D

...

...

...

A single proposal in TSMHA single proposal in CGMH

...
Accept rate=10e-12

Accept rate=100%

Is is located in France.

Accept rate=10e-20
...

Figure 4.2. Our TSMH method significantly outperforms CGMH in terms
of acceptance rate, in generating sentences with combinatorial constraints.
(Left) CGMH must pass intermediate sentence states, which have very low ac-
ceptance rate to reach the intermediate sentence “Is Paris located in France?”
starting from sentence “Paris is located in France”. This results in the poor
performance of CGMH when handling combinatorial constraints. (Right) By
embedding a tree search into MCMC, TSMH can reach the an intermediate
sentence from the starting sentence in one step, and with an acceptance rate
of 100%. R, I, D mean replace, insert, delete. See Section 4.3.1 for a detailed
discussion.

MCMC moves to the next sentence x∗ by first generating a sample x∗ from the proposal

distribution Q(x∗|x) and then accept x∗ with the following acceptance rate A(x∗|x):

A(x∗|x) = min
{

1,
π(x∗)Q(x|x∗)
π(x)Q(x∗|x)

}
. (4.3)

If sentence x∗ is rejected, then the sample remains at x. The distribution of samples will con-

verge to the sentence stationary distribution of Markov chain π(x) after long steps. Previous

work [148] proposes to use MCMC for constrained sentence generation, namely the CGMH

algorithm. Their proposal distribution only suggests sentences with one-word modifications.

Nevertheless, CGMH cannot handle the combinatorial constraints in our problem definition,

because of the low acceptance ratio problem caused by the locality of the proposal distribu-

tion. In other words, the sampling process can only visit a limited number of neighbors, thus

the Markov chain will easily be trapped in one infeasible state, resulting in a lot of rejections.

We illustrate this problem in detail and hence motivate our tree search embedded MCMC

approach using the following example.

105

4.3.1 Motivation: Breaking the Local “Low Acceptance” Barrier

Suppose we need to generate a question, whose answer comes from an underlined part of

a sentence. For example, suppose we underline France in the sentence:

1©: Paris is located in France.

The question we would like to generate is:

2©: Which country is Paris located in?

Under our constraint satisfaction framework, we define C(x) so that real interrogative

sentences such as question 2© would receive high probability in the defined π(x). Our con-

straints are: (i) the whole sentence is in the interrogative form. (ii) “Paris” and “located”

must appear in the sentence. We run MCMC starting from sentence 1©.

It is hard for MCMC without tree search to generate question 2© in reasonable time-steps

starting from 1©. Because the edit distance between sentence 1© and 2© is larger than 2,

we cannot generate 2© from 1© with one step of word insertion, removal, or replacement. In

order for CGMH to reach 2© from 1©, it has to encounter a few intermediate steps. Without

loss of generality, suppose CGMH proposes sentence 3© in one MCMC step by removing is:

3©: Paris is located in France.

Notice that 3© is not a legitimate English sentence, so its language model score PLM(x)

becomes much smaller compared to the original sentence 1©. In addition, 3© violates more

constraints than 1©, which decreases its C(x) score as well. In MCMC, the probability of

accepting the move from 1© to sentence 3© is given by Equation (4.3), in which the dominating

term is
π(3©)
π(1©) = PLM(3©) C(3©)

PLM(1©) C(1©)

Because both PLM(3©) and C(3©) are smaller, the acceptance ratio becomes really small. In

fact, we found the acceptance ratio to be 5.93×10−12 in our experiment. This means that it

will take CGMH on the order of 1012 many steps to move from sentence 1© to 3©. Figure 4.2

(left) demonstrates that barriers of low acceptance rate exist on every possible sequence of

edits from sentence 1© to 3©.

106

On the other hand, if we allow the proposal distribution Q(x∗|x) to suggest sentences with

multiple word-level changes, one can transit from sentence 1© to 2© through all legitimate

sentences as intermediate steps. Consider the following two-step change:

1. First delete is and insert is before Paris. This changes sentence 1© to:

4©: Is Paris located in France?

2. Delete France and insert Which and country. This changes sentence 4© to 2©.

Because the intermediate step sentence 4© is a legitimate English sentence and C(4©) =

C(1©), π(4©)
π(1©) is close to 1, resulting in a 100% acceptance ratio in this step. When changing

from 4© to 2©, notice that 2© is also a legitimate sentence and it satisfies more constraints

than 4©. In fact, the acceptance ratio is also 100%. Figure 4.2 (right) demonstrates this

case.

For tasks with soft constraints, there are also similar rejection problems for CGMH.

For example, “Nothing is impossible” is a sentence with a positive sentiment. If we insert,

replace, or delete one word, it is hard to keep the sentence valid and preserve the positive

sentiment.

Motivated by these examples, we propose the embed a tree search into the proposal pro-

cess of MCMC to solve the Local “low acceptance” barrier problem, which suggests candidate

sentences with multiple (rather than one) word-level edits and satisfy more constraints.

4.3.2 Detailed Procedure of TSMH

Our Tree Search enhanced Metropolis-Hastings (TSMH) still follows the classical MCMC

procedure. The only difference is a new proposal distribution Q(x∗|x) generated from a tree

search process. The tree search defines a probability distribution over templates of sentence

moves. Each template defines a subset of possible moves. The sentences within the same

template satisfy the same hard constraints. The proposal probability distribution induced

by the tree search algorithm biases towards templates that have high Constraint(x) scores.

The detailed steps are illustrated below:

107

1. Given a sentence x, our algorithm will randomly select several word positions for

editing.

2. For all the selected word positions, we use Tree Search to efficiently enumerate all

possible edit operations: to insert, delete, or replace the selected positions and what

are the word category in the case of insert and replace. Every leaf branch of the search

tree will be our sentence template.

3. We extract all the sentence templates and count the number of constraints satisfied for

each template. We randomly sample several templates with respect to a probability

distribution that favors templates satisfying more constraints.

4. we fill in the sampled template with words suggested by a language model. According

to the language model score times the soft constraint score PLM(x̂) ·Φsoft(x̂), we select

one filled sentence x̂ as the proposal.

In summary, our approach alleviates the rejection problem of CGMH by enumerating all

possibilities in the space of multiple-word change at the template level. This process enables

us to handle combinatorial constraints and the Tree search allows us to prune branches of

low-quality sentences.

4.4 Experiments

We evaluate our approach on three applications: interrogative, imperative, and fixed

sentiment sentence generation. In each task, we construct the specified type of sentences by

sampling starting from keywords and enforcing task-specific constraints.

In general, our method TSMH outperforms baselines and generates sentences that satisfy

more constraints, are of good quality ,and are likely to be close to the natural language.

Our main results are summarized in Table 4.1, in which Valid% denotes the percentage of

generated sentences that satisfy all constraints. π(x) is the value of the stationary probability

PLM(x) · Constraint(x). PGPT2(x) is language model probability estimated by a pre-trained

GPT-2 model, which measures the quality of the sentences. Accept% means the acceptance

rate of MCMC.

108

Table 4.1. Our method TSMH outperforms CGMH by generating sentences
that satisfy more constraints, are of good quality and are likely to be natural
language. Column Valid% shows the percentage of generated sentences that
satisfy all constraints, which TSMH clearly leads baselines. In addition, TSMH
has better acceptance rates (Accept%). The language generated by TSMH is
also of good quality, because it matches other models in language model scores
PGPT2(x). Multiplying both the language model score and the constraint score,
the sentences generated by TSMH tend to attain higher stationary probability
π(x).

Tasks Methods #sample step Valid% π(x) PGPT2(x) Accept%

Interrogative CGMH 300 1 18.33% 2.60E-04 1.78E-18 5.45
TSMH (ours) 100 3 92.67% 1.44E-03 5.51E-18 24.50

Imperative CGMH 300 1 91.32% 0.0004 9.86E-16 5.49
TSMH (ours) 100 3 97.75% 0.0060 6.60E-15 15.66

Sentiment CGMH 300 1 96.33% 4.93E-19 4.57E-22 6.72
TSMH (ours) 100 3 96.67% 7.94E-04 1.82E-18 11.09

4.4.1 Experiment Settings

For each task, we run our TSMH algorithm for 100 steps, with 100 candidate sentences

generated. k is set to 3. Since the tree search in TSMH considers changing 3 words at each

iteration, we run the baseline CGMH for 300 steps as a comparison. We select the sentence

with the highest π(x) value among the sentences generated by each algorithm as the output.

Detailed experiment settings can be reviewed in Appendix B.1.

4.4.2 Interrogative Sentence Generation

In the interrogative sentence generation, we construct interrogative sentences by sampling

starting from the keywords. We enforce that sentences with a high probability of being

sampled must satisfy the grammar constraints of being interrogative and contain a few given

keywords. The constraint definition for interrogative sentences is in the previous section.

According to the results, in the experiment with keywords, 92.67% of the output sentences

of our TSMH algorithm satisfy all the constraints, while merely 18.33% satisfy constraints

for the baseline. The numbers are 83.17% and 45.50% for the experiment without keywords,

109

Table 4.2. Human evaluation on the quality of the generated interrogative
sentences from keywords in terms of fluency and grammar. Most human par-
ticipants (native speakers) agree that the sentences generated by our TSMH
are better in quality compared to CGMH.

Methods Number of Votes Percentage of Votes

CGMH 196 33.64%
TSMH (Ours) 384 66.36%

respectively. This demonstrates that our TSMH generates sentences with more constraints

satisfied. In addition, our method has a higher π(x) (stationary probability value) and ac-

ceptance rate, suggesting that the tree search embedded help MCMC to mix faster. Overall,

our method TSMH can handle more complicated constraints in language generation tasks.

Human Evaluation We conduct the human evaluation for interrogative sentences gen-

erated with keywords. We present human participants from the Amazon Mechanical Turk

with a pair of sentences at a time. One sentence is generated by our TSMH model and the

other one is from the baseline CGMH. We ask human participants which sentence is better

in terms of fluency and grammar. In terms of the experimental setting, we use 100 sentence

pairs generated by CGMH and TSMH with the same keyword inputs. We randomly split

these 100 test sentence pairs into 5 survey groups, and then deploy them on the Amazon

Mechanical Turk. We randomly assign human participants to survey groups. When showing

the sentence pairs, we also provide the keywords that the sentences must contain. We ask

human participants to vote on which sentence in the pair is better in terms of grammar

coherence, keyword coverage, and fluency. We use a gold-standard question to detect if the

voter is randomly doing the survey. Every valid survey contains a randomized set of 20

questions. We received all 580 votes. Each question pair receives votes ranging from 5 to

11. As shown in Table 4.2, sentences from our model receive almost twice times of votes

than the baseline, which suggests that the sentences generated by our approach is better in

human evaluation.

Case Studies As shown in Table 4.3, we compare some output sentences of our method

with the baseline using the same inputs and keywords. More examples can be seen in the

110

Table 4.3. Case study of generating interrogative sentences with keywords.
Sentences generated by our method cover all the input keywords. Full case
study is in Table B.1.

Keywords waste heat water

CGMH what waste is there, it seems now?
TSMH (Ours) where was the waste - water heater?

Keywords responses protect lungs

CGMH how can immune responses also occur by not only infecting pathogens in the
central nervous system?

TSMH (Ours) what responses do your lungs have to protect you from pathogenic bacteria?

Keywords median temperature winter

CGMH what do you mean we have median temperature winter and spring, anyways?
TSMH (Ours) what is the median temperature range in the winter months?

Keywords catholics concentrated France

CGMH the catholics are now mainly concentrated there.
TSMH (Ours) why are the french roman catholics so densely concentrated in southern france?

appendix B.2. From these cases, we can see that our method generates sentences with better

quality.

Comparison with Other Methods We compare our TSMH method with UQA [149].

The setting of UQA is different from us: it takes a paragraph as input and generates a cor-

responding question. Although this comparison is not fair, the baseline is the most similar

and the best framework that we can compare with. To run UQA, we use the corresponding

original sentences from which the keywords of TSMH are extracted as the input. In other

words, for TSMH, the inputs are keywords extracted from the SQuAD 2.0 [150] questions.

For UQA, we take the corresponding paragraphs of the selected questions as input. This also

gives UQA an additional advantage because it has access to a paragraph, rather than key-

words. To make it more comparable, we remove the keyword constraints in this experiment.

In Table 4.4, we compare the language model scores log PLM of the generated sentences that

reflect the naturalness and fluency, and the stationary probability π(x) and valid percentage

111

Table 4.4. Comparison with UQA. Our TSMH outperforms UQA in terms
of the percentage of satisfying the interrogative sentence constraints and has
a higher score predicted by a language model, despite UQA being trained on
specific interrogative sentences while our method is not trained at all.

Methods π(x) Validness % log PLM

UQA [149] 0.0024 50% -92.75
TSMH 0.0063 83.17% -58.27

Table 4.5. Generate sentences with positive sentiment. Half of the inputs are
extracted from positive sentences, and the other half are from negative, which
are harder to transform into positive sentences.

Tasks Method π(x) PGPT-2(x) Acceptance (%) Sentiment Score

Positive to Positive CGMH 9E-19 8E-22 8.16% 0.8647
TSMH (ours) 4E-04 2E-18 12.23% 0.8801

Negative to Positive CGMH 5E-20 6E-23 5.65% 0.3470
TSMH (ours) 1E-03 7E-19 9.91% 0.5254

Valid% that show how good it satisfies our pre-defined constraints. We pointed out that

UQA was trained on the specific interrogative sentences while our method was not trained

at all.

4.4.3 Imperative Sentence Generation

We generate imperative sentences via sampling starting from the keywords. We enforce

grammar constraints of being an imperative sentence: the starting word should be either

a verb w[VERB]
1 or an adverb followed by a verb w[ADV]

1 ∧ w[VERB]
2 . We also enforce keyword

constraints in this task.

As shown in Table 4.1, our method has a higher valid percentage of 97.75% compared to

91.32% of the baseline, showing that the sentences generated by our method can satisfy more

constraints. Our method has a higher π(x) (stationary probability value) and acceptance

rate, suggesting our approach has a better mixing behavior. Overall, results show that our

method using Tree Search Embedded MCMC can handle more complicated combinatorial

constraints in language generation.

112

Table 4.6. Comparison with CtrlGen [138] over the “Negative to Positive”
subtask with acceptance rate, language score and sentiment score metrics.

Task Methods π(x) PGPT-2(x) Sentiment Score

Negative to Positive CtrlGen [138] 3.19E-07 4.64E-22 0.4614
TSMH (ours) 1.16E-03 7.07E-19 0.5254

4.4.4 Sentence Generation with Given Sentiment Score

In this task, we require the sentences to contain the specified keywords and have positive

sentiments [151]. We enforce the sentences to attain high scores from a sentiment analysis

neural network. We also enforce keyword constraints as hard constraints. We need to

emphasize that, our method uses a model pre-trained on a separate dataset for sentiment

analysis, which is kept intact in our experiment. No additional fine-tuning to the sentiment

analysis model was performed. we consider two sub-tasks in Table 4.5: (i) positive sentiment

to positive sentiment (P2P), where the input keywords are extracted from sentences which

originally have positive sentiments; (ii) negative sentiment to positive sentiment (N2P),

where the keywords are extracted from sentences with negative sentiments. N2P is more

difficult as it requires transforming the sentiment.

Our method has a higher sentiment score, suggesting that our method generates sentences

with more positive sentiments (better aligned with the target of this experiment). The

increase against CGMH is bigger on the more difficult N2P task, which requires flipping the

sentiment. Our model also leads in terms of language model scores, suggesting the language

quality is better.

Comparison with Other Methods We compare our method with CtrlGen [138]. The

setting is a little different from ours: it takes a sentence with a negative sentiment as input

and transforms it to positive, without the guarantee of satisfying keyword constraints. Our

method takes a set of keywords as input. To make the outputs comparable, we select the

same set of negative sentences as the input of CtrlGen and extract the keywords of those

sentences as the input of TSMH. Our method requires no additional training besides a pre-

113

trained sentiment analysis model and a pre-trained language model, while CtrlGen requires

training the auto-encoder.

The results in Table 4.6 show that our method outperforms CtrlGen in terms of both

sentence quality and sentiment, as the sentences generated by our method receive higher

language model scores and sentiment scores.

4.5 Summary

We propose a framework for constrained language generation via sampling and combina-

torial constraint satisfaction. Our strategy is to sample sentences from the constrained space

with probability proportional to the language model scores. To handle the combinatorial

constraints, a tree search is embedded into the proposal process of MCMC. Experiments

demonstrate that our approach generates sentences that satisfy more constraints and are

likely to be close in quality to the natural language.

114

5. Probabilistic Area Loss Minimization for Protein Sequence

Alignment

5.1 Introduction

Protein sequence alignment is a fundamental problem in computational structure biology

and has been widely applied to protein sequence, structure and functional study [152], in-

cluding protein 3D structure prediction [153] and protein homology detection [154]1. In the

past two decades, many computer programs have been developed for automatic pairwise se-

quence alignment [155–157] and multiple sequence alignment [158, 159]. Here we only focus

on pairwise sequence alignment, where we let S and T be two sequences of amino acids. Our

goal is to align the two sequences. As shown in Figure 5.1(bottom), each amino acid in one

sequence can be aligned to either an amino acid in the homology sequence (called a match)

or a gap (called an insertion). Our tasks are that: (1) given a dataset of aligned pairs of

amino acid sequences, learn the likelihoods of different alignments of the two sequences; (2)

given a new amino acid sequence pair, determine the most likely alignment.

Most probabilistic alignment approaches maximize likelihood functions, which lead to the

minimization of the pointwise differences of the two alignments. Nevertheless, this pointwise

difference loss function is unrealistic for the biology application. For example, Figure 5.1

presents two predicted alignments against the ground truth. Both predicted alignments are

different from the ground truth in four locations. Therefore, they have identical pointwise

differences against the ground truth. Nonetheless, the green alignment is considerably better

than the orange alignment, because the corresponding amino acids of each pair in the ground-

truth are much closer to the green alignment. The missed predictions of the green alignment

can be the result of biological measurement noises, while the orange alignment completely

misses the ground truth.

In order to introduce the distance between two alignments into the probabilistic model,

we propose Probabilistic Area Loss Minimization (PALM) for pairwise protein sequence

alignment, which is a two-step approach to model the whole alignment matrix. The key idea
1↑I collaborate with Fan Ding as co-author for this work. This chapter contains sections taken verbatim
from [3], which Fan Ding has never used for use of any degree. I will rewrite this chapter in final thesis and
mark out individual contributions.

115

L R P

S

L

A

origin

S _ AL
_ R _PL

_

S L _
_ R PL

A

_ _ L_

L P __R
S

_
A

S:

T:

S:

T:

Insertion at S Insertion at TMatch

gt

pred
1

pred
2

S:

T:

Figure 5.1. Illustration of protein sequence alignment and the area distance.
(Left) The task is to align two amino acid sequences S and T , where one
amino acid from one sequence can be aligned to either one amino acid from
the other sequence (match), or to a gap (insertion, marked by -). (Right) Such
an alignment becomes a path in the alignment matrix, where a diagonal tran-
sition represents a match, and a horizontal or a vertical transition represents
an insertion. The area between one predicted alignment and ground-truth is
viewed as the area distance between them. Both of the two predicted align-
ments correctly predicted one edge on the ground truth alignment, yet the one
with smaller area loss (i.e., “pred1”) is much closer to the ground truth.

of PALM is (i) using a generative model Pr(a|S, T) to model the ground-truth alignment

a where the matching of each pair of amino acids in the two protein alignment leads to a

change in the total likelihood; (ii) the observed alignment a∗ is a noisy observation of the

ground-truth alignment, the likelihood of observing which Pr(a∗|a, S, T) negatively depends

on the area difference of the two alignments. This area difference is capable of greatly

penalizing those alignments a that are far from the observed alignment a∗. The learning goal

of PALM is to maximize the marginal likelihood of the observed alignment Pr(a∗|S, T), which

sums over all the different ground-truth alignment a. However, the closed-form of maximal

likelihood estimation of PALM is computationally intractable. We, therefore, propose a

novel computing scheme that maximizes a lower bound of log Pr(a∗|S, T). To optimize the

lower bounded objective, we formulate the gradient computation using contrastive divergence

framework [160], where dynamic sampling is used to sample alignments to estimate the

gradient unbiasedly. We show theoretically that PALM can converge to the global optimum

of the objective in a linear number of iterations.

Traditionally, dynamic programming with a deterministic cost function [161, 162] was

used to obtain the alignment, including Needleman–Wunsch method for global alignment [163]

116

and Smith-Waterman algorithm for local alignment [164]. However, they are heavily de-

pendent upon the proper design of the cost function between two amino acids. Recently

probabilistic learning has been widely used to model sequences [165–168]. [169] employs

HMM-HMM comparison for learning the alignment probability which models a protein fam-

ily using HMM (Hidden Markov Model). MRFalign [165] further uses an MRF-MRF compar-

ison which is more expressive than the HMM model. However, they cannot model long-range

residue interaction patterns and thus are not sensitive enough to distant-related homologies.

The idea of using area distance to model the gap between different sequences is also found

in audio recognition [170, 171], which is under a different setting of ours.

Empirically, we show on the large dataset Protein Data Bank (PDB) [172] that our

method has higher precision and recall value, as well as much smaller area distance than

the competing methods, especially the lengths of the two sequences are far from each other.

We find that the exact/4-offset/10-offset recall of PALM is twice more than that of dynamic

programming (DP) when |S| ∈ [1, 100], |T | ∈ [400, +∞) and the exact/4-offset/10-offset

precision is also twice more than of DP when |S| ∈ [400, +∞), |T | ∈ [1, 100]. In addition,

in terms of time efficiency between learning our method using dynamic sampling and the

automatic differentiation method, PALM takes only one-fourth time to compute the gradient

than the automatic differentiation over six different testing sets.

To summarize, our contributions are as follows:

• We propose PALM, a novel two-step approach for protein sequence alignment, where

we first model the ground-truth alignment using a generative model, and then leverage

a conditional distribution formed by the area difference of two alignments to denoise

the observed alignment from noisy observation.

• We propose a novel computing scheme to maximize a tight lower bound of the compu-

tationally intractable log-likelihood, and efficiently compute the gradients by estimat-

ing it unbiasedly via dynamically sampling alignments. We show theoretically that

PALM is able to converge to the global optimum of the objective in a linear number

of iterations.

117

• Experimentally we test our method on a large PDB dataset [172], and find that PALM

outperforms the competing methods in either precision, recall, or area distance, espe-

cially on long protein sequences and remote homologies2.

5.2 Preliminary

In this section, we briefly introduce the Markov Random Field (MRF), which is used as

our probabilistic model. We also introduce the problem of pairwise sequence alignment.

5.2.1 Pairwise Sequence Alignment

Given a pair of sequence (S, T), we can formulate an alignment matrix of shape (|S|, |T |)

as shown in Figure 5.1. In the matrix, each row represents an amino acid in S and each

column represents an amino acid in T . Each alignment for sequences S and T forms a

path from the upper-left node to the bottom-right node, where each edge in the path is

either horizontal, representing an insertion in T , vertical, representing an insertion in S,

or diagonal, representing a match. We use symbols M, IS, and IT to represent a match,

an insertion in S, and an insertion in S, respectively. Thus an alignment a is a sequential

combination of symbols M, IS, and IT . Let Prθ(a|S, T) be the probability of alignment a

with parameter θ. Our goal is to align the two given sequences. Our task can be divided

into the following two parts.

Learning. Given a training set of D = {(S(k), T (k), a∗(k))}N
k=1, where S(k), T (k) is a pair of

sequences, and a∗(k) is the ground-truth alignment between the two sequences. We want to

learn the model by maximizing the log-likelihood, which translates to the following problem:

Maximizeθ
1
N

N∑
k=1

log Prθ(a∗(k)|S(k), T (k)). (5.1)

where θ is the parameter of the model.
2↑Implementation: https://github.com/jiangnanhugo/PALM

118

https://github.com/jiangnanhugo/PALM

Inference. After learning the model’s parameter θ, we can use the model to find the best

alignment between two new sequences by solving the following problem:

â = arg max
a∈A

Pr(a|S, T) (5.2)

where A = {a | a is a valid path} is the set of all valid paths. The alignment â needs to

form a consecutive path in the alignment matrix.

Nevertheless, most existing approaches that maximize likelihood functions will lead to

the minimization of the pointwise differences between the two alignments, which is unre-

alistic for biology applications. For instance, Figure 5.1 presents two predicted alignments

against the ground truth. Both alignments are different from the ground truth in four loca-

tions. Therefore, they have equal pointwise differences against the ground truth. However,

the green alignment is considerably better than the orange alignment, because the corre-

sponding amino acids of each pair in the ground-truth are much closer in this alignment.

The missed predictions of the green alignment can be the result of biological measurement

noises, while the orange alignment completely misses the ground truth. Therefore, the green

alignment should have a larger likelihood compared to the orange one given the ground-truth

alignment.

5.3 Probabilistic Area Loss Minimization

In this section, we first introduce our two-step model and then explain how it can solve

the distant-related gap problem. Followed by the illustration of how to efficiently learn this

model via dynamic sampling. Finally, we detail the process of generating alignments in

testing.

5.3.1 Two-step Model

Define function π be the mapping from the index on the alignment to the indexes on

both sequences, i.e., πS(a, k) is the index on sequence S for the k-th term of alignment a, and

119

Algorithm 4: Probabilistic Area Loss Minimization for Protein Sequence Align-
ment

Input: Model parameter θ, Maximum epochs Epo, Learning rate η, Weight λ,
Training data D.

Output: The converged model’s parameter θEpo

1 for t = 1 to Epo do
2 Solved by DP for computing matrix A

3 Inference â← arg maxa{
∑|a|

k=1 φθ(πS(a, k), πT (a, k), ak)− λLarea(a∗, a)}.
4 Randomly pick data {S, T, a∗} from training set D.
5 for i = |S| to 1, j = |T | to 1 do
6 Compute Z(i, j). // See (5.9) and is used in Step 10

7 for m = 1 to M do
8 i = |S|, j = |T |
9 while i ≥ 1 and j ≥ 1 do

10 Sample an edge am
k w.r.t Prθ(ak|Si, Tj) and update i, j. // See (5.10)

11 Compute gradient of the neural network ∇φθ(πS(am, k), πT (am, k), am
k).

12 Sample M alignments: [a1, . . . aM] from probability Prθ(a|S, T)).
13 Estimate ∇ log Zφ ← 1

M

∑M
m=1

[∑|am|
k′=1∇φθ(πS(a, k′), πT (a, k′), ak′)

]
.

14 Estimate ∇LLB ←
∑|â|

k=1∇φθ(πS(â, k), πT (â, k), âk)−∇ log Zφ.
15 θt+1 ← θt + η∇LLB. // Gradient update

16 return θEpo

πT (a, k) is the index on sequence T for that term. (πS(a, k), πT (a, k)) are the coordinates of

the k-th term of a in the alignment matrix.

Prior Prediction. Let A = {a | a is a valid path} be the set of all valid paths. The

validness ensures that alignment a has to start from the upper-left node and end at the

bottom-right node in the matrix. We model the probability of having the alignment a over

sequences S and T as:

Prθ(a|S, T) =
exp

(∑|a|
k=1 φθ(πS(a, k), πT (a, k), ak)

)
Zφ

(5.3)

where Zφ = ∑
a∈A exp

(∑|a|
k=1 φθ(πS(a, k), πT (a, k), ak)

)
is the partition function. Also the

function φθ(πS(a, k), πT (a, k), ak) is the feature that takes as input the features extracted

from every two amino acids of S and T , and θ represent the model parameters. Notice that

120

function φθ can be either a linear function, where the model becomes a Markov random field

or a neural network of arbitrary architecture.

Denoising via Area Distance. Due to the measurement error of biological tools, the

observed alignments a∗ are usually noisy [173]. In view of this observation, we introduce a

conditional probability distribution over a∗ conditioned on the latent variable a to diminish

the effect of noise. We leverage the area distance as a probabilistic measure where the

predicted alignment a that is similar to the observed one a∗ has higher probability value:

Prarea(a∗|a, S, T) = exp (−λLarea(a∗, a))
Zarea

(5.4)

where Zarea = ∑
a′∈A exp (−λLarea(a∗, a′)) is the normalization term and λ is the weight. We

compute the area distance as the gap of area between the two alignments in the alignment

matrix, which penalizes those predicted alignments that is far away from the observed align-

ment. For instance, as in Figure 5.1, the area distance between the ground-truth and the

first predicted alignment (green line) is 1.5, and is 4.5 between the ground-truth and the

second one (orange line). Then, we maximize the likelihood of the observed alignment, and

the whole model becomes

Pr(a∗|S, T) =
∑

a

Prarea(a∗|a, S, T)Prθ(a|S, T).

which sums over the latent variable a and is the marginal distribution of a∗.

5.3.2 Model Learning

To learn the model Pr(a∗|S, T), we would like to maximize the log-likelihood of the

observed alignment given sequence S and T :

max
θ
L = max

θ
log Pr(a∗|S, T) (5.5)

121

Combining with our model definition in Equation 5.3 and 5.4, the log likelihood L can be

rewritten as:

L = log
∑

a

exp (−λLarea(a∗, a))
Zarea

exp
(∑|a|

k=1 φθ(πS(a, k), πT (a, k), ak)
)

Zφ

= log
∑

a

exp
 |a|∑

k=1
φθ(πS(a, k), πT (a, k), ak)− λLarea(a∗, a)

− log ZφZarea

The evaluation of L needs to sum over all possible alignments, which is computationally

intractable. Since the sum is usually dominated by one alignment that has the maximum

likelihood, we optimize the lower bound of L instead of directly optimizing L. Denote the

lower bound as LLB, which is

LLB = max
a
{

|a|∑
k=1

φθ(πS(a, k), πT (a, k), ak)−λLarea(a∗, a)} − log Zarea − log Zφ (5.6)

It is obvious that LLB ≤ L because of the principle of log-sum-exp function: maxx φ(x) ≤

log∑x exp(φ(x)) ≤ maxx φ(x) + log N , where N represents the number of all possible x.

Then, the learning procedure is separated into two steps, where the first step is to infer â

that has the maximum likelihood:

â = max
a
{

|a|∑
k=1

φθ(πS(a, k), πT (a, k), ak)− λLarea(a∗, a)}

One can identify that â represents those alignments that are close to the observed alignment

a∗. Since the observed alignments are generated by biological tools and contains some noisy

observation, our method use a bunch of alignments that are close to the observed alignments

to reduce the impact of noise. The second step is to optimize parameter θ in order to

maximize LLB using both a∗ and â. By optimizing the parameter θ, we can keep increasing

the likelihood of â, making the lower bound to approach the true likelihood L. Algorithm 4

shows the learning procedure of PALM. In the next few parts, we will show how to inference

â via dynamic programming, how to optimize θ via dynamic sampling, and finally give a

convergence analysis of our learning algorithm.

122

Inference via Dynamic Programming Based on the observation that our area loss Larea

is decomposable, we propose a dynamic programming approach to inference â. Specifically,

we decompose the area loss into the sum of area-unit distance Larea(a∗, â) = ∑|â|
k′=1 Lk′

area(a∗, â)

where k′ is the index of the predicted alignment â. Given the observed alignment a∗, we

compute Lk′
area as follows: we first find it’s corresponding coordinates on sequences S and

T is πS(â, k′), πT (â, k′) and then find an index k in a such that πT (a, k) = πT (â, k′). Then

Lk′
area is defined as:

Lk′

area(a∗, â) =



|πS(a∗, k)−πS(â, k′)+1
2 | a∗

k = M, âk′ = IT

|πS(a∗, k)−πS(â, k′)| a∗
k = M, âk′ = M

|πS(a∗, k)−πS(â, k′)−1
2 | a∗

k = IT , âk′ = M

|πS(a∗, k)−πS(â, k′)| a∗
k = IT , âk′ = IT

0 otherwise

Since we can decompose Larea, â can be obtained by the following dynamic programming

approach. Let A(i, j) represent the maximum likelihood of the path from node (i, j) to the

bottom right corner, in the alignment matrix of sequence S and sequence T . Then we have:

A(i, j) = max



A(i+1, j+1) + φθ(Si, Tj, M) + λLk′
area(a∗, â)

A(i + 1, j) + φθ(Si, Tj, IS) + λLk′
area(a∗, â)

A(i, j + 1) + φθ(Si, Tj, IT) + λLk′
area(a∗, â)

where j = πT (â, k′) and we initialize A(|S|, |T |) = 0. The computation is line by line from

the bottom right corner to the up left corner in the alignment matrix. The corresponding

alignment â can be extracted from the matrix A by following the path that gives the largest

likelihood.

123

ground-truth alignment

sampled alignment
origin

end

Figure 5.2. Sampling a path from the original until reaching the bottom-
right corner in the alignment matrix. At point (i, j), the sampling approach
first calculates the probability of taking the options M, IS, IT at this point,
and then samples one option according to the probability value.

Optimization via Dynamic Sampling Once â is obtained according to the area distance,

we optimize the lower bound LLB using stochastic gradient descent. The gradient of LLB

can be written as:

∇LLB =
|â|∑

k=1
∇φθ(πS(â, k), πT (â, k), âk)−∇ log Zφ (5.7)

The term ∇φθ(πS(â, k), πT (â, k), âk) is the gradient of function φθ, which can be directly

computed. Overall, there are |â| number of gradient terms with respect to this function.

log Zarea term does not contain parameter to optimize, so it does not has the corresponding

124

gradient term in ∇LLB. For computing ∇ log Zφ, we follow the idea of contrastive diver-

gence [160] that formulate it as an expectation over probability P (a|S, T):

∇ log Zφ = 1
Zφ

∑
a∈A
∇ exp

 |a|∑
k′=1

φθ(πS(a, k′), πT (a, k′), ak′)


= Ea∼P rθ(a|S,T)

 |a|∑
k′=1
∇φθ(πS(a, k′), πT (a, k′), ak′)


≈ 1

M

∑
am∼P rθ(a|S,T)

 |am|∑
k′=1
∇φθ(πS(am, k′), πT (am, k′), am

k′)


Therefore, we can approximate the exact gradient ∇ log Zφ unbiasedly by first sampling M

paths from distribution Prθ(a|S, T) and then sum the gradients ∇φθ of all sampled path

{am}M
m=1. Below we propose a backward-forward approach to sample one alignment under

the probability distribution Prθ(a|S, T).

Backward Computing Z(i, j). We denote Z(i, j) as the sum of all the unnormalized

energy values of every path starting from point (i, j) to the end (|S|, |T |).

Zφ(i, j) =
∑

a∈A(i,j)
exp

 |a|∑
k=1

φθ(πS(a, k), πT (a, k), ak)
 (5.8)

whereA(i, j) is the set of all possible valid paths starting from node (i, j) to the end (|S|, |T |).

Then, we can backward compute Z(i, j) via dynamic programming:

Zφ(i, j) =Zφ(i + 1, j + 1) exp (φθ(i, j, M))

+ Zφ(i + 1, j) exp (φθ(i, j, IS))

+ Zφ(i, j + 1) exp (φθ(i, j, IT))

(5.9)

Forward Sampling Alignment. To sample a path am starting from the original point in

the alignment matrix to the bottom right corner, we recursively sample the k-th edge of the

125

alignment from {M, IS, IT} at point (i, j) based on the probability distribution Prθ(am
k |Si, Tj)

correspondingly.

Prθ(am
k |Si, Tj) =



Z(i+1,j+1)
Z(i,j) exp (φθ(i, j, M)) am

k = M

Z(i+1,j)
Z(i,j) exp (φθ(i, j, IS)) am

k = IS

Z(i,j+1)
Z(i,j) exp (φθ(i, j, IT)) am

k = IT

(5.10)

where 1 ≤ i ≤ |S| and 1 ≤ j ≤ |T |. See Figure 5.2 as an example. We start from the top-left

corner and iteratively compute and sample with respect to the probability until we arrive at

the bottom-right corner. After we have obtained all the samples {am}M
m=1, we estimate the

gradient ∇LLB and update parameter θ.

Remark 5.3.1. The time complexity of computing gradient via dynamic sampling isO(|S||T |+

(|S| + |T |)M). The complexity of computing Z is O(|S||T |). The complexity of computing

the probability distribution for sampling is O((|S|+ |T |)M). Thus, the whole optimization

process of each iteration is O(|S||T |+ (|S|+ |T |)M).

Convergence Analysis In view of the convexity of LLB, we analyze our algorithm in terms

of convergence rate towards the global optimal. We show in Theorem 5.3.2 that PALM is

guaranteed to converge in a linear number of iterations to the global optimum.

Theorem 5.3.2. Let LLB be the lower bound of the log-likelihood function in Equation 5.6.

Denote θ = arg maxθ LLB and the total variation V arP rθ(a)(φθ(a)) ≤ L. In iteration t of

PALM in Algorithm 4, θt+1 = θt +ηgt where gt is an unbiased estimation of the exact gradient

∇LLB(θt). V ar(gt) ≤ σ2

M
where M is sample size. Then, for any number of epochs T > 1,

step size η ≤ 2
L

, and θT = 1
T

∑T
t=1 θt,we have:

E[LLB(θT)]− LLB(θ∗) ≤ ||θ0 − θ∗||22
2ηT

+ ησ2

M
. (5.11)

Theorem 5.3.2 states that PALM converges to the global optimal of LLB with O(T) iterations.

This is mainly because the objective function LLB is convex w.r.t parameter θ. In addition,

since the total variation is bounded V arP rθ(a)(φθ(a)) ≤ L, we can prove that LLB is also

126

L−smooth. Therefore, by unbiasedly estimating the gradient, we can prove the convergence

rate based on classic results in the literature of stochastic gradient descent. The complete

proof of Theorem 5.3.2 is left to supplementary materials. In practice, we can increase either

the number of epochs T or the sample size M to approach a better result.

5.3.3 Inference in Testing

Inference in testing is to predict an alignment that attains the most likelihood. It is

different from Section 5.3.2, in which we use inference to generate alignment to estimate

lower bounded loss function LLB. Given sequence S, T and the learned model, the inference

case can be computed as finding an alignment that has the highest likelihood without area

distance:

â = arg maxa∈A exp
 |a|∑

k=1
φθ(πS(a, k), πT (a, k), ak)

 (5.12)

Instead of enumerating all the possible valid paths in the matrix, we can still use dynamic

programming to infer an alignment with O(|S||T |) time complexity. Let A′(i, j) represent

the path from node (i, j) to the right corner with the maximum energy value in the alignment

matrix of sequence S and sequence T . Then we have

A′(i, j) =



A′(i + 1, j) + φθ(Si, Tj, IS), if 1 ≤ i ≤ |S|, j = |T |+1;

A′(i, j + 1) + φθ(Si, Tj, IT), if i = |S|+1, 1 ≤ j ≤ |T |;

max



A′(i + 1, j + 1) + φθ(Si, Tj, M)

A′(i + 1, j) + φθ(Si, Tj, IS)

A′(i, j + 1) + φθ(Si, Tj, IT)

otherwise

where the initial condition is A′(|S|, |T |) = 0 and the computation is line by line from

the bottom right corner to the up left corner in the alignment matrix. The corresponding

alignment â can be extracted from the matrix A′ by following the edge that gives the largest

energy value.

127

Table 5.1. Comparison of precision and recall between our method and dy-
namic programming (DP) over different lengths of protein sequences on PDB
[172] dataset. 4-off/10-off are the relaxed measures. PALM gets better results
especially on longer sequences and remote homologies than the competing ap-
proach.

|S| ∈ [1, 100], |T | ∈ [100, 200] |S| ∈ [100, 200], |T | ∈ [1, 100]

Precision (%) Recall (%) Precision (%) Recall (%)
exact/4-off/10-off exact/4-offset /10-offset exact/4-off/10-off exact/4-off/10-off

DP 7.8/31.3/51.2 20.4/39.0/56.3 20.2/40.4/59.4 6.1/26.3/45.1
PALM 9.9/29.8/48.7 23.5/43.1/62.3 26.8/44.6/63.2 6.4/26.6/43.1

|S| ∈ [1, 100], |T | ∈ [200, 400] |S| ∈ [200, 400], |T | ∈ [1, 100]

Precision (%) Recall (%) Precision (%) Recall (%)
exact/4-off/10-off exact/4-off/10-off exact/4-off/10-off exact/4-off/10-off

DP 5.2/27.6/46.1 32.0/39.8/46.7 30.0/37.5/44.7 3.8/19.8/34.4
PALM 6.5/26.9/43.3 51.4/62.5/73.3 52.7/63.5/73.8 3.3/18.7/31.0

|S| ∈ [1, 100], |T | ∈ [400, +∞) |S| ∈ [400,∞), |T | ∈ [1, 100]

Precision (%) Recall (%) Precision (%) Recall (%)
exact/4-off/10-off exact/4-off/10-off exact/4-off/10-off exact/4-off/10-off

DP 4.9/26.4/45.2 31.5/34.0/36.2 32.5/34.5/36.4 2.5/15.6/27.0
PALM 5.1/21.4/35.3 75.3/81.1/86.3 76.0/81.1/86.1 3.1/18.1/29.1

|S| ∈ [100, 200], |T | ∈ [200, 400] |S| ∈ [200, 400], |T | ∈ [100, 200]

Precision (%) Recall (%) Precision (%) Recall (%)
exact/4-off/10-off exact/4-off/10-off exact/4-off/10-off exact/4-off/10-off

DP 6.5/27.0/45.2 26.1/38.6/50.5 25.4/38.9/51.2 5.9/22.2/37.0
PALM 10.4/30.0/47.0 34.8/49.4/62.9 36.2/50.4/63.4 4.6/18.5/31.0

|S| ∈ [100, 200], |T | ∈ [400, +∞) |S| ∈ [400, +∞), |T | ∈ [100, 200]

Precision (%) Recall (%) Precision (%) Recall (%)
exact/4-off/10-off exact/4-off/10-off exact/4-off/10-off exact/4-off/10-off

DP 4.9/24.1/41.0 33.4/38.1/42.6 34.9/39.9/44.6 2.8/14.4/24.8
PALM 6.1/23.4/38.3 61.1/69.0/76.5 62.5/71.0/78.8 3.2/14.1/23.6

5.4 Experiments

In this section, we first illustrate the experiment setups and then compare PALM with

competing methods in terms of testing performance and learning efficiency, followed by an

ablation study on the hyper-parameter of the area distance.

128

Dataset. The full dataset for the protein alignment task is from [165], which contains 10567

distinct sequences and 210477 pairwise aligned sequences. The ground-truth alignments

are generated from DeepAlign tool [174]. The feature for every amino acid describes the

geometric similarity, evolutionary relationship, and hydrogen-bonding similarity of proteins.

The feature dimension is 41. We use the full dataset for the training step. For testing,

we first partition the full dataset by the length of two sequences and then randomly pick

200 pairwise aligned sequences from each group. The length of sequences are divided into 5

groups: [1, 100], [100, 200], [200, 400], [1, 200], [400,∞).

Baselines. We consider a dynamic programming algorithm (DP) with a deterministic cost

function [163] to find the global alignment given two sequences. We use the cost for matching

(i.e., M) as the summation over the feature vectors of two amino acids. The cost for insertion

on sequence S (i.e., IS) is the summation over the feature vector for the corresponding amino

acid on sequence S. The cost for insertion on sequence T (i.e., IT) is defined similarly. For

algorithms that use a deep neural network with a richer set of features for the protein

alignment problem, such as CNF [175] and DRNF [172], we do not compare with them for

the sake of fairness. Because the parameter size of the implemented PALM model is much

smaller and the feature used is also limited. However, PALM can be easily extended to a

deep neural network by changing the feature function φθ. We leave the comparison with

these deep neural methods as future work.

Evaluation Metrics. We use Precision and Recall to measure the quality of the predicted

alignments. In the “exact” scenario, only an exactly matched result is used for computing

the true positive rate. The “4-offset” scenario is a relaxed measure that a 4-position off

the exact match is allowed. The “10-offset” case is defined similarly. These two relaxed

metrics are applied to depict the model’s performance for longer sequences. We also include

the averaged computing time for estimating ∇ log Zθ over 100 epochs to reveal the time

efficiency of our sampling approaches.

Implementation. The feature function φθ is a neural network with one single layer and

the dimension of parameter θ is 82. φθ is adaptable to deeper neural networks with more

parameters. For the “match” case, we use the concatenation of feature vectors. For insertion

on sequence S case, we use the concatenation of feature vector for Si and a zero vector. For

129

Table 5.2. Ablation study on hyper-parameter λ. When λ approaches infin-
ity, area distance becomes more important in the inference of â during training,
which leads to â more similar to the ground-truth alignment a∗. It can be seen
that when we select a suitable λ that strikes a balance between the area dis-
tance and the score function, we can learn a better model than pure maximum
likelihood learning (when λ→ +∞).

|S| ∈ [1, 100], |T | ∈ [400, +∞) |S| ∈ [400, +∞), |T | ∈ [1, 100]
Precision (%) Recall (%) Precision (%) Recall (%)

λ exact/4-off/10-off exact/4-off/10-off exact/4-off/10-off exact/4-off/10-off

50 5.1/22.6/36.4 75.3/81.1/86.3 75.9/81.1/86.0 2.6/17.0/27.2
100 4.6/21.3/35.2 75.3/81.1/86.3 76.0/81.1/86.1 3.1/18.1/29.1
500 4.5/20.9/34.0 75.4/81.2/86.4 75.9/81.0/85.9 3.1/17.4/28.3
∞ 4.2/20.8/35.7 75.1/80.9/85.0 75.0/80.7/85.0 3.5/16.8/27.8

insertion on sequence T , we use the concatenation of a zero vector and feature vector for Tj.

For the hyper-parameters, we set the number of sampled paths M to be 100 and the relative

weight of area loss λ = 50. The learning rate η is initialized as 1 and decays by factor 0.9

for every 50 epochs. The maximum training epochs is set as 106. It takes a day to converge

on the training set.

5.4.1 Learning Effectiveness for PALM

We compare with DP over 8 different testing sets for sequence alignment tasks. Re-

sults are collected in Table 5.1, where we observe that PALM has a higher Recall over

exact/4-off/10-off settings when sequence T is much longer than sequence S and PALM

has higher Precision over the exact/4-off/10-off settings when sequence S is longer. For

|S| ∈ [1, 100], |T | ∈ [400, +∞), where the length difference of two sequences is large, Rthe

ecall of PALM is twice as high as DP. Similarly, for |S| ∈ [400, +∞), |T | ∈ [1, 100], Precision

of PALM is roughly twice as high as DP. When the difference of lengths of the two sequences

becomes close, e.g., for |S| ∈ [1, 100], |T | ∈ [100, 200], PALM has a relatively 3-6% higher

Recall value than DP. Similarly, for |S| ∈ [100, 200], |T | ∈ [1, 100], PALM has a relatively

4-6% higher Precision than DP.

130

5.4.2 Ablation Study on Weight Hyper-parameter

Here we analyze how the hyper-parameter λ balances the area distance and the score

function for inference during training. When λ approaches infinity, area distance becomes

more important in the inference of â during training, which leads to â more similar to the

ground-truth alignment a∗. It can be seen from Table 5.2 that when we select a suitable

λ that strikes a balance between the area distance and the score function, we can learn a

better model than pure maximum likelihood learning (when λ→ +∞).

5.4.3 Time Efficiency for Gradient Computation

We compare the time efficiency of computing the gradient with Automatic Differentiation

(Autograd) [176], which computes the exact gradient by automatically back-propagation, and

our approach in Table 5.3. We implement both of the methods using PyTorch framework and

select 100 sequence pairs in every testing set at random to measure the average time. Since

the computational time is approximately proportional to the sequence length, the standard

deviation of computation time is included to show the impact of sequence length. We find

that PALM is much more time efficient than Autograd among all the sequence length settings,

where PALM only needs one-fourth of the time than the competing approach to approximate

the gradient. In the extreme case where |S| ∈ [400, +∞) and |T | ∈ [400, +∞), the Autograd

method takes roughly 5 minutes to compute the gradient for just one sequence pair while

PALM only takes 1 minutes. Additionally, the standard deviation of the computing time for

the competing approach is much higher than PALM, which means PALM is more stable to

the variation of sequence lengths.

5.5 Summary

In this chapter, we present a novel method PALM for the generative pairwise protein

sequence alignment problem, which is a two-step generative model based on the area distance

between two alignments in the alignment matrix. We propose a novel lower bound of the

log-likelihood as the objective and efficiently estimate the gradient during optimization by

131

Table 5.3. Time efficiency of computing the gradient among different testing
sets. PALM is much time efficient than the competing method Autograd,
which computes the exact gradient by automatically back-propagation, among
all length intervals of two protein sequences.

Length of sequences Averaged Run Time (sec)
|S| |T | PALM Autograd

[1, 100] [1, 100] 0.7± 0.2 2.5± 0.8
[100, 200] [100, 200] 2.7± 0.9 9.4± 3.3
[100, 200] [200, 400] 6.6± 2.3 25.4± 9.4
[200, 400] [100, 200] 6.2± 2.0 23.2± 8.1
[200, 400] [200, 400] 12.5± 2.3 51.7± 11.2
[400, +∞) [400, +∞) 63.4± 32.0 297.6± 282

dynamically sampling the alignments. We showed theoretically that PALM converges to the

global optimum of the lower bound in a linear number of iterations. In experiments, PALM

can generate sequence alignments with higher precision and recall than competing methods

especially when proteins under consideration are remote homologies. We also show that

the optimization of PALM is much more computationally efficient by dynamically sampling

alignments than the automatic gradient differentiable algorithm. For future work, we plan to

model the feature function with deep neural nets, while feeding more informative features.

We are also active in finding more meaningful distance functions to model the difference

between two alignments.

132

6. Symbolic Regression via Control Variable Genetic

Programming

6.1 Introduction

Discovering scientific laws automatically from experiment data has been a grand goal of

Artificial Intelligence (AI). Its success will greatly accelerate the pace of scientific discovery.

Symbolic regression, i.e., learning symbolic expressions from data, consists of a vital step

in realizing this grand goal. Recently, exciting progress [177–184] has been made in this

domain, especially with the aid of deep neural networks. Despite great achievements, state-

of-the-art approaches are limited to learning relatively simple expressions, often involving a

few independent variables. Regressing symbolic expressions involving multiple independent

variables still remains out of reach of current approaches. The difficulty mainly lies in the

exponentially large search space of symbolic expressions.

Our work attacks this major gap of symbolic regression, leveraging control variable ex-

perimentation – a classic procedure widely implemented in the science community [185,

186]. In the analysis of complex scientific phenomena involving many contributing factors,

control variable experiments are conducted where a set of factors are held constant (i.e.,

controlled variables), and the dependence between the output variable and the remaining

input variables is studied [187, 188]. The result is a reduced-form expression that mod-

els the relationship only between the output and the non-controlled variables. Once the

reduced-form equation is validated, scientists introduce more variables into play by freeing

a few controlled variables in previous experiments. The new goal is to extend the previous

equation to a general one including the newly introduced variables. This process continues

until all independent variables are introduced.

Our proposed Control Variable Genetic Programming (CVGP) approach implements the

aforementioned scientific discovery process using Genetic Programming (GP) for symbolic

regression over many independent variables. The key insight of CVGP is to learn from a

customized set of control variable experiments; in other words, the experiment data collection

adapts to the learning process. This is in contrast to the current learning paradigm of most

symbolic regression approaches, where they learn from a fixed dataset collected a priori.

133

In CVGP, first, we hold all independent variables except for one as constants and learn

a symbolic expression that maps the single variable to the dependent variable using GP.

GP maintains a pool of candidate equations and improves the fitness of these equations

via mating, mutating, and selection over several generations. Mapping the dependence of

one independent variable is easy. Hence GP can usually recover the ground-truth reduced-

form equation. Then, CVGP frees one independent variable at a time. In each iteration,

GP is used to modify the equations learned in previous generations to incorporate the new

independent variable. This step is again conducted via mating, mutating, and selection.

Such a procedure repeats until all the independent variables have been incorporated into the

symbolic expression.

After discovering CVGP independently, the authors learned in private communications a

line of research work [189–194] that also implemented the human scientific discovery process

using AI, pioneered by the BACON systems developed by Langley, P. in 1978-1981 [189–191].

While BACON’s discovery was driven by rule-based engines and our CVGP uses modern

machine learning approaches such as genetic programming, indeed both approaches share

a common vision – the integration of experiment design and model learning can further

expedite scientific discovery.

Theoretically, we show CVGP as an incremental builder can reduce the exponential-

sized search space for candidate expressions into a polynomial one when fitting a class of

symbolic expressions. Experimentally, we show CVGP outperforms a number of state-of-the-

art approaches on symbolic regression over multiple independent variables. Our contributions

can be summarized as:

1. We propose CVGP, an incremental builder for symbolic regression over many independent

variables. CVGP fits increasingly more complex equations via conducting control variable

experiments with fewer and fewer controlled variables1.

2. Theoretically, we show such an incremental builder as CVGP can reduce exponential-

sized search spaces for symbolic regression to polynomial ones when searching for a class of

symbolic expressions.
1↑The code is at: https://github.com/jiangnanhugo/cvgp/.

134

https://github.com/jiangnanhugo/cvgp/

3. Empirically, we demonstrate CVGP outperforms state-of-the-art symbolic regression ap-

proaches in discovering multi-variable equations from data.

6.2 Preliminaries

Symbolic Expression. A symbolic expression φ is expressed as variables and constants

connected by a set of operators. Variables are allowed to vary while constants remain the

same. Each operand of an operator is either a variable, a constant, or a self-contained

symbolic expression. A symbolic expression can also be drawn as a tree, where variables

and constants reside in leaves, and operators reside in inner nodes. See Figure 6.1(a) for an

example. in this chapter, we deal with expressions involving real numbers. The semantic

meaning of a symbolic expression follows its standard definition in arithmetics.

Symbolic Regression. Given a dataset {(xi, yi)}n
i=1 and a loss function `(·, ·), where

xi ∈ Rm and yi ∈ R, the objective of symbolic regression (SR) is to search for the optimal

symbolic expression φ∗ within the space of all candidate expressions Π that minimizes the

average loss:

φ∗ ← arg min
φ∈Π

1
n

n∑
i=1

`(φ(xi), yi), (6.1)

in addition to regularization terms. Symbolic regression is challenging and is shown to be

NP-hard [195], due to the exponentially large space of candidate symbolic expressions.

Genetic Programming for Symbolic Regression. Genetic Programming (GP) has

been a popular method to solve symbolic regression. Recently, a few other approaches based

on neural networks surpassed the performance of GP in symbolic regression. We leave the

discussions of these methods to the related work section. The high-level idea of GP is to

maintain a pool of candidate symbolic expressions. In each generation, candidate expressions

are mutated with probability Pmu and mated with probability Pma. Then in the selection

step, those with the highest fitness scores, measured by how each expression predicts the

output from the input, are selected as the candidates for the next generation, together with

a few randomly chosen ones to maintain diversity. After several generations, expressions

with high fitness scores, i.e., those fit data well survive in the pool of candidate solutions.

The best expressions found in all generations are recorded as hall-of-fame solutions.

135

× ×

x1 x3 x2 x4

C2

C1

x1 x2 x3 x4 y

0.6 0.3 0.8 0.2 0.42

0.1 0.3 0.8 0.2 0.02

0.2 0.3 0.8 0.2 0.10

0.9 0.3 0.8 0.2 0.66

x1 x2 x3 x4 y

0.3 0.5 0.1 0.7 -0.32

0.6 0.5 0.1 0.7 -0.29

0.2 0.5 0.1 0.7 -0.33

0.9 0.5 0.1 0.7 -0.26

(a) Ground-truth expression
(c) Trial T1

(b) Reduced form after
fddcontrolling x2, x3 , x4 (d) Trial T2

controlledcontrolled

×

x1

− −

Figure 6.1. An example of two trials of a control variable experiment. (a)
The data of the experiment is generated by the ground-truth expression φ =
x1x3 − x2x4. (b) If we control vc = {x2, x3, x4} and only allow vf = {x1}
to vary, it looks like the data are generated from the reduced-form equation
φ′ = C1x1−C2. (c, d) The generated data in two trials of the control variable
experiments. The controlled variables are fixed within each trial but vary
across trials.

6.3 Control Variable Genetic Programming

In this section, we present our control variable genetic programming algorithm. Before

we dive into the algorithm description, we first need to study what are the outcomes of a

control variable experiment and what conclusions we can draw on the symbolic regression

expression by observing such outcomes.

6.3.1 Control Variable Experiment

A control variable experiment CVExp(φ, vc, vf , {Tk}K
k=1) consists of the trial symbolic ex-

pression φ, a set of controlled variables vc, a set of free variables vf , and K trial experiments

T1, . . . , TK . The expression φ may have zero or multiple open constants. The values of open

constants are determined by fitting the equation to the training data.

One Trial in a Control Variable Experiment. A single trial of a control variable exper-

iment Tk fits the symbolic expression φ with a batch of data. To avoid abusing notations, we

also use Tk to denote the batch of data. In the generated data Tk, every controlled variable

is fixed to the same value while the free variables are set randomly. We assume the values of

the dependent variables in a batch are (noisy observations) of the ground-truth expressions

with the values of independent variables set in the batch. In science, this step is achieved by

136

conducting real-world experiments, i.e., controlling independent variables, and performing

measurements on the dependent variable.

For example, Figure 6.1(c,d) demonstrates two trials (K = 2) of a control variable

experiment in which variable x2, x3, x4 are controlled, i.e., vc = {x2, x3, x4}. They are fixed

to one value in trial T1 (in Figure 6.1(c)) and another value in trial T2 (in Figure 6.1(d)). x1

is the only free variable, i.e., vf = {x1}.

Reduced-form Expression in a Control Variable Setting. We assume there is a

ground-truth symbolic expression that produces the experiment data. In other words, the

observed output is the execution of the ground-truth expression from the input, possibly

in addition to some noise. In control variable experiments, because the values of controlled

variables are fixed in each trial, what we observe is the ground-truth expression in its reduced

form, where sub-expressions involving only controlled variables are replaced with constants.

Figure 6.1(b) provides an example of the reduced form expression. Assume the data is

generated from the ground-truth expression in Figure (a): φ = x1x3−x2x4. When we control

the values of variable in vc = {x2, x3, x4}, the data looks like they are generated from the

reduced expression: φ′ = C1x1 − C2. We can see both C1 and C2 hold constant values in

each trial. However, their values vary across trials because the values of controlled variables

change. In trial T1, when x2, x3, and x4 are fixed to 0.5, 0.1, 0.7, C1 takes the value of x3,

i.e., 0.1. C2 takes the value of x2x4, i.e., 0.35. In trial T2, C1 = 0.8 and C2 = 0.06.

We call constants which represent sub-expressions involving controlled variables in the

ground-truth expression summary constants, and refer to constants in the ground-truth

expression stand-alone constants. For example, C1 and C2 in Figure 6.1(b) are both summary

constants, because C1 replaces the controlled variable x3 and C2 replaces a sub-expression

x2x4 in the ground-truth expression. Notice the types of constants are unknown in the

process of fitting an expression to control variable experiment data. However, the best-fitted

values of these constants across several trials reveal important information: a constant is

probably a summary constant if its fitted values vary greatly across trials, while a constant

that remains the almost same value across trials is probably stand-alone.

Outcome of a Single Trial. The outcomes of the k-th trial are two-fold: (1) the values

of the constants that best fit the given batch of data. We denote these values as vector ck.

137

(2) the fitness score measuring the goodness-of-fit, denoted as ok. One typical fitness score

is the mean squared error (MSE). See Appendix F.3.1 for the exact definition of MSE. For

the example in Figure 6.1, if we fit the reduced expression in (b) to data in trial T1, the

best-fitted values are c1 = (C1 = 0.1, C2 = 0.35). For trial T2, the best-fitted values are

c2 = (C1 = 0.8, C2 = 0.06). In both trials, the fitness scores (i.e., the MSE value) are 0,

indicating no errors.

Outcome of Multiple trials. We let the values of control variables vary across different

trials. This corresponds to changing experimental conditions in real science experiments.

The outcomes of an experiment with K trials are: (1) φ.o = (o1, . . . , oK), where each ok is

the fitness score of trial k and (2) φ.c = (c1, . . . , cK), the best-fitted values to open constants

across trials.

Critical information is obtained by examining the outcomes of multi-trial control vari-

able experiments: (1) consistent close-to-zero fitness scores {o1, . . . , oK} suggest the fitted

expression is close to the ground-truth equation in the reduced form. (2) given the equation

is close to the ground truth, an open constant having similar best-fitted values across K

trials {c1, . . . , cK} suggests the open constants are stand-alone.

6.3.2 Control Variable Genetic Programming

The high-level idea of the CVGP algorithm is to build more complex symbolic expressions

involving more and more variables based on control variable experiments with fewer and fewer

controlled variables.

138

Algorithm 5: Control Variable Genetic Programming (CVGP)
Input: GP pool size M ; #generations #Gen; #trials K; #expressions in

hall-of-fame set #Hof; mutate probability Pmu; mate probability Pma;

operand set Op

1 . vc ← {x1, . . . , xm}; vf ← ∅;

2 Pgp ← CreateInitGPPool(M);

3 for xi ∈ {x1, . . . , xm} do

4 vc ← vc \ {xi}; vf ← vf ∪ {xi} ; // Set xi to be free variable

5 Do
i ← DataOracle(vc, vf);

6 for φ ∈ Pgp do

7 {Tk}K
k=1 ← GenData(Do

i) ; // Query Oracle for the trial data

8 φ.o, φ.c← CVExp(φ, vc, vf , {Tk}K
k=1) ; // Control variable experiments

9 Pgp,H ← GP(Pgp,Do
i , K, M, #Gen, #Hof, Pmu, Pma, Op ∪ {const, xi});

10 for φ ∈ Pgp do

11 FreezeEquation(φ, φ.o, φ.c);

12 return The set of hall-of-fame equations H.

To fit an expression of m variables, initially, we control the values of all m− 1 variables

and allow only one variable to vary. Using Genetic Programming (GP), we find a pool of

expressions {φ1,1, . . . , φ1,M} which best fit the data from this controlled experiment. Notice

{φ1,1, . . . , φ1,M} are restricted to contain the only one free variable. This fact renders fitting

them a lot easier than fitting the expressions involving all m variables. Next, for each φ1,l, we

examine (1) if the errors of the fitting are consistently small across all trials. A small error

implies φ1,l is close to the ground-truth formula reduced to the one free variable. We hence

freeze all operands of φ1,l in this case. Freezing means GP in later steps cannot change these

operands. (2) In the case of a small fitting error, we also inspect the best-fitted values of each

open constant in φ1,l across different trials. The constant is probably a summary constant

if its values vary across trials. In other words, these constants represent sub-expressions

involving the controlled variables. We thus mark these constants as expandable for later

steps. The remaining constants are probably stand-alone. Therefore we also freeze them.

139

After the first step, CVGP adds a second free variable and starts fitting {φ2,1, . . . , φ2,M}

using the data from control variable experiments involving the two free variables. Similar

to the previous step, all φ2,l are restricted to only contain the two free variables. Moreover,

they can only be mated or mutated by GP from the first generation {φ1,1, . . . , φ1,M}. The

mutation can only happen on non-frozen nodes. After GP, a similar inspection is conducted

for every equation in the GP pool, and corresponding variables and/or operands are frozen.

This process continues to involve more and more variables. Eventually, the expressions in

the GP pool consider all m variables.

The whole procedure of CVGP is shown in Algorithm 5. Here, x1, . . . , xm are moved

from the controlled to free variables in numerical order. We agree other orders may boost

its performance even further. However, we leave the exploration of this direction as future

work. When a new variable becomes free, the control variable experiment CVExp needs to

be repeated for every equation φ in the GP pool Pgp (Line 5-9 in Algorithm 5). This is

because the fitness scores and the fitted open constant values will both change when the set

of controlled variables is updated. Then function GP is called. GP is a minimally modified

genetic programming algorithm for symbolic regression whose pseudo-code is in Algorithm 6.

The only differences are that it uses data from control variable experiments and the mutation

operation at step i only allows to use all operands, the constant node, and variable xi at

non-frozen nodes. Finally, in Lines 12-14 of Algorithm 5, FreezeEquation is called for every

equation in the GP pool. The high-level idea of freezing is discussed above. H is returned

as the set of “hall of fame” expressions.

Figure 6.2 shows the high-level idea of fitting an equation using CVGP. Here the process

has four stages, each stage with a decreased number of controlled variables. The trial data

in each stage is shown at the bottom and the best expression found is shown at the top. The

expandable constants are bold and blue. The readers can see how the fitted equations grow

into the final ground-truth equation, with one free variable added at a time.

The Availability of a Data Oracle. A crucial assumption behind the success of CVGP is

the availability of a data oracle Do that returns a (noisy) observation of the dependent output

variable with input variables in vc controlled and vf free. This differs from the classical

setting of symbolic regression, where a dataset is obtained before learning [196, 197]. Such a

140

x1 x2 x3 x4 yx1 x2 x3 x4 y

Be
st

 E
xp

re
ss

io
n

Tr
ee

M
ul

tip
le

 T
ria

l
D

at
a

× ×

x1 x3 x2 x4

× C2

C1 C5C3 C4

x1 x2 x3 x4 y
0.3 0.5 0.1 0.7 -.32
0.6 0.5 0.1 0.7 -.29
0.2 0.5 0.1 0.7 -.33
0.9 0.5 0.1 0.7 -.26

(b) Control x3, x4

x1 x2 x3 x4 y
0.6 0.1 0.8 0.4 .44
0.4 0.9 0.8 0.4 .04
0.3 0.2 0.8 0.4 .16
0.7 0.4 0.8 0.4 .40

x1 x2 x3 x4 y

(c) Control x4

x1 x2 x3 x4 y
0.7 0.8 0.1 0.2 -.09
0.5 0.4 0.6 0.2 .22
0.2 0.1 0.9 0.2 .16
0.3 0.5 0.1 0.2 -.07

x1 x2 x3 x4 y

x1 x2 x3 x4 y
0.2 0.4 0.2 0.7 -.24
0.9 0.3 0.5 0.5 .30
0.5 0.4 0.8 0.1 .36
0.1 0.8 0.7 0.6 -.41
(d) No control(a) Control x2, x3, x4

x1

× × × ×

x1 x2 x1 x2x3

− − − −

Figure 6.2. Running example of Algorithm 5. (a) Initially, a reduced-form
equation φ′ = C1x1 − C2 is found via fitting control variable data in which
x2, x3, x4 are held as constants and only x1 is allowed to vary. Two leaves
nodes C1, C2 are as summary constants (colored blue). (b) This equation is
expanded to C3x1−C4x2 in the second stage via fitting the data in which only
x3, x4 are held as constants. (c,d) This process continues until the ground-
truth equation φ = x1x3 − x2x4 is found. The data generated for control
variable experiment trials in each stage are shown at the bottom.

data oracle represents conducting control variable experiments in the real world, which can

be expensive.

However, we argue that the integration of experiment design in the discovery of scien-

tific knowledge is indeed the main driver of the successes of CVGP. This idea has received

tremendous success in early works [189–191] but unfortunately has been largely forgotten in

today’s symbolic regression community. Our work does not intend to show the superiority of

one approach. Instead, we would like to point out that carefully designed experiments can

improve any method, and GP is used as an example. We acknowledge that fully controlled

experiments may be difficult in some scenarios. In cases where it is difficult to obtain such

a data oracle, We leave such effort as future work.

6.3.3 Theoretical Analysis

We show in this section that the idea of control variable experiments may bring an

exponential reduction in the search space for particular classes of symbolic expressions. To

141

Algorithm 6: GP(Pgp,Do, K, M, #Gen, #Hof, Pmu, Pma, Op)
Input: Initial GP Pool Pgp; data Oracle Do; #trials K; GP pool size M ;

#generations #Gen; #expressions in hall-of-fame set #Hof; mutate
probability Pmu; mate probability Pma; mutation node library Op

1 for j ← 1 to #Gen do
2 Pnew ← ∅;
3 for φ ∈ Pgp do
4 if with probability Pmu then
5 φ← Mutate(φ, Op); ; // Mutation
6 {Tk}K

k=1 ← GenData(Do);
7 φ.o, φ.c ← CVExp(φ, vc, vf , {Tk}K

k=1);
8 Pnew ← Pnew ∪ {φ};
9 Pgp ← Pnew;

10 Pnew ← ∅;
11 for φl, φl+1 ∈ Pgp do
12 if with probability Pma then
13 φl, φl+1 ← Mate(φl, φl+1); ; // Mating
14 {Tk}K

k=1 ← genData(Do);
15 φl.o, φl.c← CVExp(φl, vc, vf , {Tk}K

k=1);
16 φl+1.o, φl+1.c← CVExp(φl+1, vc, vf , {Tk}K

k=1);
17 Pnew ← Pnew ∪ {φl, φl+1};

18 H ← TopK(Pnew ∪H, K = #Hof) ; // Update the hall of fame set.
19 Pgp ← selection(Pnew, M);
20 Return GP pool and hall-of-fame Pgp,H

see this, we assume the learning algorithm follows a search order from simple to complex

symbolic expressions and the data is noiseless.

Definition 6.3.1. The search space of symbolic expression trees of l nodes S(l) is the set of

all symbolic expression trees involving at most l nodes.

Lemma 6.3.2. For simplicity, assume all operands are binary, and let o be the number of

operands and m be the number of input variables. The size of the search space of symbolic

expression trees of l nodes scales exponentially; more precisely at O((4(m + 1)o) l−1
2) and

Ω((4(m + 1)o) l−1
4).

142

The proof of Lemma 6.3.2 mainly involves counting binary trees. We leave its detailed proof

in Appendix D.1. For our purposes, it is sufficient to know the size is exponential in the size

of expression tree l.

Definition 6.3.3 (Simple to complex search order). A symbolic regression algorithm

follows a simple to complex search order if it expands its search space from short to long

symbolic expressions; i.e., first search for the best symbolic expressions in S(1), then in

S(2) \ S(1), etc.

In general, it is difficult to quantify the search order of any symbolic regression algo-

rithms. However, we believe the simple to complex order reflects the search procedures of a

large class of symbolic regression algorithms, including our CVGP. In fact, [198] explicitly

use regularizers to promote the search of simple and short expressions. Our CVGP follows

the simple to complex search order approximately. Indeed, it is possible that genetic pro-

gramming encounters more complex equations before their simpler counterparts. However, in

general, the expressions are built from simple to complex equations by mating and mutating

operations in genetic programming algorithms.

Proposition 6.3.4 (Exponential Reduction in the Search Space). There exists a sym-

bolic expression φ of (4m − 1) nodes, a normal symbolic regression algorithm following the

simple to complex search order has to explore a search space whose size is exponential in m

to find the expression, while CVGP following the simple to complex order only expands O(m)

constant-sized search spaces.

Proof. Consider a dataset generated by the ground-truth symbolic expression made up of 2

operands (+,×), 2m input variables and (4m− 1) nodes:

(x1 + x2)(x3 + x4) . . . (x2m−1 + x2m). (6.2)

To search for this symbolic regression, a normal algorithm following the simple to complex

order needs to consider all expression trees up to (4m−1) nodes. According to Lemma 6.3.2,

the normal algorithm has a search space of at least Ω((16m + 8)m−1/2), which is exponential

in m.

143

On the other hand, in the first step of CVGP, x2, . . . , x2m are controlled and only x1 is

free. In this case, the ground-truth equation in the reduced form is

(x1 + C1)D1, (6.3)

in which both C1 and D1 are summary constants. Here C1 represents x2 and D1 represents

(x3 +x4) . . . (x2m−1 +x2m) in the control variable experiments. The reduced equation is quite

simple under the controlled environment. CVGP should be able to find the ground-truth

expression exploring search space S(5).

Proving using induction. In step 2i (1 ≤ i ≤ m), variables x2i+1, x2i+2, . . . , x2m are held

as constants, x1, . . . , x2i are allowed to vary. The ground-truth expression in the reduced

form found in the previous (2i− 1)-th step is:

(x1 + x2) . . . (x2i−1 + C2i−1)D2i−1. (6.4)

CVGP needs to extend this equation to be the ground-truth expression in the reduced form

for the 2i-th step, which is:

(x1 + x2) . . . (x2i−1 + x2i)D2i. (6.5)

We can see the change is to replace the summary constant C2i−1 to x2i. Assume the data is

noiseless and CVGP can confirm expression (6.4) is the ground-truth reduced-form expression

for the previous step. This means all the operands and variables will be frozen by CVGP,

and only C2i−1 and D2i−1 are allowed to be replaced by new expressions. Assume CVGP

follows the simple to complex search order, it should find the ground-truth expression (6.5)

by searching replacement expressions of lengths up to 1.

Similarly, in step 2i + 1, assume CVGP confirms the ground-truth expression in the

reduced form in step 2i, CVGP also only needs to search in constant-sized spaces to find

the new ground-truth expression. Overall, we can see only O(m) searches in constant-sized

spaces are required for CVGP to find the final ground-truth expression.

144

6.4 Related Work

Symbolic Regression. Symbolic Regression is proven to be NP-hard [195], due to the

search space of all possible symbolic expressions being exponential in the number of input

variables. Early works in this domain are based on heuristic search [199, 200]. Genetic

programming turns out to be effective in searching for good candidates of symbolic expres-

sions [178, 182, 184, 201]. Reinforcement learning-based methods propose a risk-seeking

policy gradient to find the expressions [180–182]. Other works use RL to adjust the prob-

abilities of genetic operations [202]. Also, there are works that reduced the combinatorial

search space by considering the composition of base functions, e.g. Fast function extrac-

tion [203] and elite bases regression [204]. In terms of the families of expressions, research

efforts have been devoted to searching for polynomials with single or two variables [205],

time series equations [206], and also equations in physics [201]. Multi-variable symbolic re-

gression is more challenging because the search space increases exponentially with respect

to the number of independent variables. Existing works for multi-variable regression are

mainly based on pre-trained encoder-decoder methods with a massive training dataset (e.g.,

millions of datasets [207]), and even larger generative models (e.g., about 100 million param-

eters [208]). Our CVGP is a tailored algorithm to solve multi-variable symbolic regression

problems.

AI-driven Scientific Discovery. Recently AI has been highlighted to enable scientific

discoveries in diverse domains [209, 210]. Early work in this domain focuses on learning

logic (symbolic) representations [211, 212]. Recently, learning Partial Differential Equations

(PDEs) from data has also been studied extensively [213–223]. In this domain, a line of

works develops robots that automatically refine the hypothesis space, some with human

interactions [192, 193, 224]. These works are quite related to ours because they also actively

probe the hypothesis spaces, albeit they are in biology and chemistry.

Active Learning and Reasoning. Active learning considers querying data points actively

to maximize the learning performance [225, 226]. Our approach is related to active learning

because control variable experiments can be viewed as a way to actively collect data. How-

145

ever, besides active data collection, our CVGP builds simple to complex models, which is

not in active learning.

Meta-reasoning – Thinking Fast and Slow. The co-existence of fast and slow cognition

systems marks an interesting side of human intelligence [227–229]. Our CVGP is motivated

by this dual cognition process. In essence, we argue instead of entirely relying on the brute-

force way of learning using big data and heavy computation (fast thinking), incrementally

expanding from reduced-form equations to the full equation may result in better outcomes

(slow thinking).

Causality. Control variable experiments are closely related to the idea of intervention, which

is commonly used to discover causal relationships [230–234]. However, we mainly use control

variable experiments to accelerate symbolic regression, which still identifies correlations.

6.5 Experiments

In this section, we demonstrate CVGP finds the symbolic expressions with the smallest

Normalized Mean-Square Errors (NMSE) among all 7 competing approaches on 21 noiseless

benchmark datasets (in Table 6.1) and 20 noisy benchmark datasets (in Table 6.2). In

the ablation studies, we show our CVGP is consistently better than the baselines when

evaluated in different evaluation metrics, evaluating different quantiles of the NMSE metric,

with different amounts of Gaussian noise added to the data (Figure 6.3, more complete

results in Figure D.1 and D.2 in the appendix). In Table 6.3, we show our CVGP has a

higher rate of recovering the ground-truth expressions than baselines.

6.5.1 Experimental Settings

Datasets. To highlight the performance of CVGP in regressing multi-variable expressions,

we consider synthesized datasets, involving randomly generated expressions with multiple

variables. A dataset is labeled by the ground-truth equation that generates it. The ground-

truth equations we consider are multi-variable polynomials characterized by their operands

and a tuple (a, b, c). Here a is the number of independent variables. b is the number

of singular terms. A singular term can be an independent variable, such as x1, or a unary

146

operand on a variable, such as sin(x1). c is the number of cross terms. They look like C1x3x4

or C2 sin(x1)inv(x5), etc. Here C1, C2 are randomly generated constants. The tuples and

operands listed in different tables and charts indicate how the ground-truth expressions are

generated. For each dataset configuration, we repeat our experiments 10 times, each time

with a randomly generated symbolic expression of the given configuration. For noiseless

datasets, the output is exactly the evaluation of the ground-truth expression. For noisy

datasets, the output is further perturbed by Gaussian noise of zero means and a given

standard deviation.

Remarks on Public Available Datasets. Most public datasets are black-box [235],

containing randomly generated input and output pairs of an unknown symbolic equation.

The point of our work is to show that customized collected control variable experiment data

improves symbolic regression, and hence we cannot use these randomly generated data. In

addition, most datasets are on equations of a small number of independent variables. We

intentionally test on benchmark sets involving many variables to highlight our approach.

Evaluation. In terms of the evaluation metric, the median (50%) and 75%-percentile of

the NMSE across these 10 experiments are reported. We choose to report median values

instead of mean due to outliers (see box plots in Figure 6.3(a-d)). This is a common practice

for combinatorial optimization problems. The mathematical definition of NMSE and other

NRMSE, MSE, RMSE metrics are presented in Appendix D.2.2.

Baselines. We consider the following baselines based on evolutionary algorithms: 1) Ge-

netic Programming (GP) [236]. 2) Eureqa [237]. We also consider a series of baselines using

reinforcement learning: 3) Priority queue training (PQT) [238]. 4) Vanilla Policy Gradient

(VPG) that uses the REINFORCE algorithm [239] to train the model. 5) Deep Symbolic

Regression (DSR) [180]. 6) Neural-Guided Genetic Programming Population Seeding (GP-

Meld) [181].

We leave detailed descriptions of the configurations of our CVGP and baseline algorithms

in the appendix and only mention a few implementation notes here. We implemented GP

and CVGP. They use a data oracle, which returns (noisy) observations of the ground-truth

equation when queried with inputs. We cannot implement the same oracle for other baselines

because of code complexity and/or no available code. To ensure fairness, the sizes of the

147

Table 6.1. Median (50%) and 75%-quantile NMSE values of the symbolic ex-
pressions found by all the algorithms on several noiseless benchmark datasets.
Our CVGP finds symbolic expressions with the smallest NMSEs.

Dataset CVGP (ours) GP DSR PQT VPG GPMeld Eureqa
configs 50% 75% 50% 75% 50% 75% 50% 75% 50% 75% 50% 75% 50% 75%
(2,1,1) < 1e-6 <1e-6 2.19e-3 7.91e-2 3.507 4.787 0.262 1.16 0.359 19.16 0.273 1.356 <1e-6 <1e-6
(3,2,2) 0.001 0.004 0.015 0.135 1.53 43.09 0.58 1.13 0.83 1.32 1.06 2.18 <1e-6 <1e-6
(4,4,6) 0.008 0.059 0.012 0.054 1.006 1.249 1.006 2.459 1.221 2.322 1.127 2.286 1.191 6.001
(5,5,5) 0.011 0.019 0.025 0.177 1.038 8.805 1.048 4.736 1.401 38.26 1.008 1.969 0.996 6.340
(5,5,8) 0.007 0.013 0.010 0.017 1.403 5.161 1.530 41.27 4.133 27.42 1.386 8.092 1.002 1.495
(6,6,8) 0.044 0.074 0.058 0.200 1.963 90.53 4.212 8.194 4.425 22.91 15.58 269.6 1.005 1.150
(6,6,10) 0.012 0.027 0.381 0.820 1.021 1.036 1.006 1.048 1.003 1.020 1.022 1.689 1.764 49.041

(a) Datasets containing operands {inv, +,−,×}
(2,1,1) 1.06e-4 6.69e-2 7.56e-4 7.72e-2 1.87 8.16 0.20 0.22 2.38 6.14 <1e-6 <1e-6 <1e-6 <1e-6
(3,2,2) 0.005 0.123 0.023 0.374 0.087 0.392 0.161 0.469 0.277 0.493 0.112 0.183 <1e-6 <1e-6
(4,4,6) 0.028 0.132 0.044 0.106 2.815 9.958 2.381 13.844 2.990 11.316 1.670 2.697 0.024 0.122
(5,5,5) 0.086 0.402 0.063 0.232 2.558 3.313 2.168 2.679 1.903 2.780 1.501 2.295 0.158 0.377
(5,5,8) 0.014 0.066 0.102 0.683 2.535 2.933 2.482 2.773 2.440 3.062 2.422 3.853 0.284 0.514
(6,6,8) 0.066 0.166 0.127 0.591 0.936 1.079 0.983 1.053 0.900 1.018 0.964 1.428 0.433 1.564
(6,6,10) 0.104 0.177 0.159 0.230 6.121 16.32 5.750 16.29 3.857 19.82 7.393 21.709 0.910 1.927

(b) Datasets containing operands {sin, cos, +,−,×}.
(2,1,1) <1e-6 0.004 <1e-6 0.76 0.032 4.778 0.038 4.782 0.115 4.095 0.008 5.859 <1e-6 <1e-6
(3,2,2) 0.039 0.083 0.043 0.551 0.227 7.856 0.855 2.885 0.233 0.400 0.944 1.263 <1e-6 <1e-6
(4,4,6) 0.015 0.121 0.042 0.347 1.040 1.155 1.039 1.055 1.049 1.068 1.886 4.104 0.984 1.196
(5,5,5) 0.038 0.097 0.197 0.514 3.892 69.98 4.311 23.66 5.542 8.839 9.553 16.92 0.901 1.007
(5,5,8) 0.050 0.102 0.111 0.177 2.379 2.526 1.205 2.336 1.824 2.481 1.142 1.874 1.002 2.445
(6,6,8) 0.029 0.038 0.091 0.151 1.605 8.005 1.718 7.783 4.691 39.03 1.398 16.60 1.001 1.008
(6,6,10) 0.018 0.113 0.087 0.194 2.083 23.57 1.797 4.521 1.888 35.45 2.590 8.784 1.001 1.008

(c) Datasets containing operands {sin, cos, inv, +,−,×}.

training datasets we use for those baselines are larger than the total number of data points

accessed in the full execution of those algorithms. In other words, their access to data would

have no difference if the same oracle has been implemented for them because it does not

affect the executions whether the data is generated ahead of the execution or on the fly. The

reported NMSE scores in all charts and tables are based on separately generated data that

have never been used in training. The threshold to freeze operands in CVGP is if the MSE

to fit a data batch is below 0.01. The threshold to freeze the value of a constant in CVGP

is if the variance of best-fitted values of the constant across trials drops below 0.001.

6.5.2 Experimental Analysis

Learning Result. Our CVGP attains the smallest median (50%) and 75%-quantile NMSE

values among all the baselines mentioned in Section 6.5.1, when evaluated on noiseless

datasets (Table 6.1) and noisy datasets (Table 6.2). This shows our method can better

148

Table 6.2. Median (50%) and 75%-quantile NMSE values of the symbolic
expressions found by all the algorithms on several noisy benchmark datasets
(Gaussian noise with zero mean and standard deviation 0.1 is added). Our
CVGP finds symbolic expressions with the smallest NMSEs.

Dataset CVGP (ours) GP DSR PQT VPG GPMeld
configs 50% 75% 50% 75% 50% 75% 50% 75% 50% 75% 50% 75%
(2,1,1) 0.198 0.490 0.024 0.053 0.032 3.048 0.029 0.953 0.041 0.678 0.387 22.806
(4,4,6) 0.036 0.088 0.038 0.108 1.163 3.714 1.016 1.122 1.087 1.275 1.058 1.374
(5,5,5) 0.076 0.126 0.075 0.102 1.028 2.270 1.983 4.637 1.075 2.811 1.479 2.855
(5,5,8) 0.061 0.118 0.121 0.186 1.004 1.013 1.005 1.006 1.002 1.009 1.108 2.399
(6,6,8) 0.098 0.144 0.104 0.167 1.006 1.027 1.006 1.020 1.009 1.066 1.035 2.671
(6,6,10) 0.055 0.097 0.074 0.132 1.003 1.009 1.005 1.008 1.004 1.015 1.021 1.126

(a) Datasets containing operands {sin, cos, inv, +,−,×}.
(2,1,1) 0.049 0.812 0.103 0.263 0.069 0.144 0.066 0.093 0.094 0.416 0.066 0.118
(3,2,2) 0.098 0.165 0.108 0.425 0.350 0.713 0.351 1.831 0.439 0.581 0.102 0.597
(4,4,6) 0.078 0.121 0.120 0.305 7.056 16.321 5.093 19.429 2.458 13.762 2.225 3.754
(5,5,5) 0.067 0.230 0.091 0.313 32.45 234.31 36.797 229.529 14.435 46.191 28.440 421.63
(5,5,8) 0.113 0.207 0.119 0.388 195.22 573.33 449.83 565.69 206.06 629.41 363.79 666.57
(6,6,8) 0.170 0.481 0.186 0.727 1.752 3.824 4.887 15.248 2.396 7.051 1.478 6.271
(6,6,10) 0.161 0.251 0.312 0.342 11.678 26.941 5.667 24.042 7.398 25.156 11.513 28.439

(b) Datasets containing operands {sin, cos, +,−,×}.
(2,1,1) 0.241 0.873 0.102 1.0018 0.440 1.648 0.757 9.401 0.2142 3.349 0.0002 0.0007
(3,2,2) 0.049 0.113 0.023 0.166 0.663 2.773 1.002 1.992 0.969 1.310 0.413 2.510
(4,4,6) 0.141 0.220 0.238 0.662 1.031 1.051 1.297 1.463 1.051 1.774 1.093 1.769
(5,5,5) 0.157 0.438 0.195 0.337 1.098 3.617 1.018 5.296 1.012 1.27 1.036 3.617
(5,5,8) 0.122 0.153 0.166 0.186 1.009 1.103 1.017 1.429 1.007 1.132 1.07 2.904
(6,6,8) 0.209 0.590 0.209 0.646 1.003 1.153 1.047 1.134 1.059 1.302 1.029 3.365
(6,6,10) 0.139 0.232 0.073 0.159 1.654 3.408 1.027 1.069 1.009 1.654 1.445 2.106

(c) Datasets containing operands {sin, cos, inv, +,−,×}.

handle multiple variables symbolic regression problems than the current best algorithms in

this area.

Ablation Studies. We use box plots in Figure 6.3(a-d) to show that the superiority of our

CVGP generalizes to other quantiles beyond the 50% and 75%-quantile. We also show the

performance is consistent under the variations of evaluation metrics in Figure 6.3(a-d), and

noise levels in Figure 6.3(e-f).

Recovering Ground-truth Equations. For relatively less challenging noiseless datasets

(i.e., (2, 1, 1) with various operand sets), our CVGP sometimes recovers ground-truth expres-

sions. We evaluate the percentage that each algorithm successfully detects the ground-truth

expressions on 50 randomly generated benchmark datasets. Table 6.3 shows that our CVGP

algorithm has a higher chance to recover ground-truth expressions than the GP method.

149

CVGP
GP VPG PQT DSRGPMeld

Eureqa

101

103

105

M
SE

sin,cos, inv (5, 5, 8)

CVGP
GP VPG PQT DSRGPMeld

Eureqa

100

101

102

103

R
M

SE

sin,cos, inv (5, 5, 8)

CVGP
GP VPG PQT DSRGPMeld

Eureqa

10−2

10−1

100

101

N
M

SE

sin,cos, inv (5, 5, 8)

(a) (b) (c)

CVGP
GP VPG PQT DSRGPMeld

Eureqa

10−1

100

N
R

M
SE

sin,cos, inv (5, 5, 8)

0.02 0.04 0.08 0.1 0.12 0.14
Noise Level

2−7

2−5

2−3

2−1
N

M
SE

sin, cos, inv (5, 5, 5)

CVGP (ours)
GP

0.02 0.04 0.08 0.1 0.12 0.14
Noise Level

2−5

2−2

21

N
M

SE

sin, cos, inv (6, 6, 8)

CVGP (ours)
GP

(d) (e) (f)

Figure 6.3. (a-d) Box plots of evaluation metrics for the expressions found
by different algorithms on the noiseless dataset. (e-f) Box plots in NMSE
values for the expressions found by CVGP and GP over benchmark datasets
with different noise levels. Our CVGP is consistently the best regardless of
the evaluation metrics and noise levels.

Table 6.3. Ground-truth recovery rate comparison. Our CVGP has a higher
rate of recovering the ground-truth expressions compared to GP on 3 simple
datasets.

Set of allowed operations Dataset configuration CVGP (ours) GP
{inv, +,−,×}

(2,1,1)
64% 44%

{sin, cos, +,−,×} 46% 22%
{sin, cos, inv, +,−,×} 44% 32%

6.6 Summary

In this chapter, we propose Control Variable Genetic Programming (CVGP) for sym-

bolic regression with many independent variables. This is beyond current state-of-the-art

approaches mostly tested on equations with one or two variables. CVGP builds equations

involving more and more independent variables via control variable experimentation. The-

oretically, we show CVGP as an incremental building approach can bring an exponential

150

reduction in the search spaces when learning a class of expressions. In experiments, CVGP

finds the best-fitted expressions among 7 competing approaches and on dozens of bench-

marks.

151

7. Racing Control Variable Genetic Programming for Symbolic

Regression

7.1 Introduction

Automatically discovering scientific laws from experimental data has been a long-standing

aspiration of Artificial Intelligence. Its success holds the promise of significantly accelerat-

ing scientific discovery. A crucial step towards achieving this ambitious goal is symbolic

regression, which involves learning explicit expressions from the experimental data. Recent

advancements in this field have shown exciting progress, including works on genetic program-

ming, Monte Carlo tree search, deep reinforcement learning and their combinations [177–181,

183, 184, 240, 241].

Despite remarkable achievements, the current state-of-the-art approaches are still limited

to learning relatively simple expressions, typically involving only a few independent variables.

The real challenge lies in symbolic regression involving multiple independent variables. The

aforementioned approaches learn symbolic equations from a fixed dataset. As a result, these

methods require massive datasets and extensive training time to discover complex equations.

Recently, a novel approach called Control Variable Genetic Programming (CVGP) [242]

is introduced to accelerate symbolic regression. Instead of learning from fixed datasets

collected a-priori, CVGP carries out symbolic regression using customized control variable

experiments. As a motivating example, to learn the ideal gas law pV = nRT , one can hold n

(gas amount) and T (temperature) as constants. It is relatively easy to learn p (pressure) is

inversely proportional to V (volume). Indeed, CVGP discovers a chain of simple-to-complex

symbolic expressions; e.g., first an expression involving only p and V , then involving p, V ,

T , etc. In each step, learning is carried out on specially collected datasets where a set of

variables held constant. The major difference between CVGP and previous approaches is

that CVGP actively explores the space of all expressions via control variable experiments,

instead of learning passively from a pre-collected dataset.

However, the set of experiments is fixed a-priori in CVGP. It first learns an equation

involving only the first variable, then involving the first two variables, etc. In particular,

CVGP works with a fixed experiment schedule (noted as π), that is the sequences of con-

152

10−3 10−2 10−1 100

Normalized Mean Square Error

π1
π2
π3
π4
π5
π6
π7
π8
π9
π10
π11
π12
π13
π14
π15
π16
π17
π18
π19
π20
π21
π22
π23
π24

E
xp

er
im

en
tS

ch
ed

ul
es

default schedule⇒
⇐best alternative schedule

Figure 7.1. Impact of experiment schedules (noted as π) on learning perfor-
mance of control variable genetic programming. For the discovery of expression
with 4 variables, there exists a better experiment schedule (i.e., π4) among all
schedules than the default one (i.e., π1), in terms of normalized mean square
error (more examples in Appendix E.4.1).

trolled variables. We observe that the sub-optimal selection of experiment schedules delays

the discovery process significantly. In Figure 7.1, we run CVGP with all 24 possible experi-

ment schedules and report the quartiles of normalized mean squared errors (NMSE) of the

discovered top 20 expressions. We see that certain experiment schedules (such as π4) are

significantly better than others including the default schedule π1.

To overcome this limitation, we propose Racing-CVGP, which automatically discovers

good experiment schedules that lead to accurate symbolic regression. A selection scheme

over the experiment schedules is implemented, similar to that used in selecting good symbolic

equations in genetic programming, to ensure that promising experiment schedules eventually

win over the average schedules. The unfavorable schedules are terminated early to save time

for promising schedules. Racing-CVGP allows flexible control variables experiments to be

performed during the discovery process. If a specific set of controlled variable experiments

fails to discover a good expression, it is ranked at the bottom and is eventually removed

153

control variable x1 no control variablecontrol variables x1, x2

+
x3c1

+
x3×

x2c1

control variables x2, x3

×
cosc2

x1

+
c1

(b) Unfavorable Experiment Schedule πr

Control variables x1, x3

+

x3
×

x2c1

control variable x1

+
x3×

x2cos
x1

control variable x3

+
c2×

x2
cos

x1

… …

… …
cos

x1

x1

(a) Multi-steps of edits are
needed to obtain the tree in (b).

c2×
x2c1

+
×

cosc2

x1

×
cosc2

x1

+
c1

 (c) Favorable Experiment Schedule πg

Figure 7.2. The favorable experiment schedule πg is survived while the un-
favorable schedule πr is early stopped under our racing experiment schedule
scheme. (a) Multiple steps of edits are needed to transform from a randomly
initialized expression “x1” to a complex expression “c1 +c2 cos(x1)”. The newly
inserted parts (by genetic programming algorithm) are highlighted in blue. (b)
The red experiment schedule πr is unfavorable because it requires many edits
to reach the expression tree in the red box (shown in (a)). The red schedule
is thus stopped early. (c) The green experiment schedule πg is promising since
it is relatively easy to discover, and every change in the expression tree is rea-
sonable. Section 7.3.1 provides a detailed explanation.

by the selection scheme. Our idea allows the algorithm to avoid spending excessive time on

unfavorable experiment schedules and to focus on exploring promising experiment schedules.

In experiments, we compare Racing-CVGP against several popular symbolic regression

baselines using challenging datasets with multiple variables. On several datasets, we observe

that Racing-CVGP discovers higher quality expressions in terms of the NMSE metric against

several baselines. Our Racing-CVGP also takes less computational time than all the base-

lines. Our Racing-CVGP stops those unfavorable schedules early, which commonly leads to

a longer training time. Notably, our method scales well to expressions with 8 variables while

the GP, CVGP, and GPMeld methods take more than 48 hours and thus are time-consuming.

Our contributions can be summarized as follows:

• We identify that a sub-optimal selection of the experiment schedule greatly delays the

discovery process of symbolic regression. We propose Racing-CVGP to accelerate scientific

154

discovery by maintaining good experiment schedules during learning challenging symbolic

regression tasks.

• Under our racing schedule, a favorable schedule is survived while unfavorable schedules

are stopped early. We show the time complexity of our Racing-CVGP is approximately close

to that of the CVGP, under mild assumptions.

• In experiments, we showcase that our Racing-CVGP leads to faster discovery of symbolic

expressions with smaller NMSE metrics, compared to current popular baselines over several

challenging datasets1.

7.2 Preliminaries

7.2.1 Symbolic Regression for Scientific Discovery

A symbolic expression φ is expressed as variables x = {x1, . . . , xn} and constants c =

{c1, . . . , cm}, connected by a set of binary operators (like {+,−,×,÷}) and/or unary opera-

tors (like {sin, cos, log, exp}). The operator set is noted as Op. Each operand of an operator

is either a variable, a constant, or a self-contained sub-expression. For example, “x1 +x2” is a

expression with 2 variables (x1 and x2) and one binary operator (+). A symbolic expression

can be equivalently represented as a binary expression tree, where the leaf nodes correspond

to variables and constants and the inner nodes correspond to those operators. Figure 7.3

presents two example expression trees.

Given a dataset D = {(xi, yi)}N
i=1 and a loss function `(·, ·), the task of symbolic regression

is to find the optimal symbolic expression φ∗ with minimum loss over dataset D, among the

set of all candidate expressions (noted as Π):

φ∗ ← arg min
φ∈Π

1
N

N∑
i=1

`(φ(xi, c), yi), (7.1)

where the values of the open constants c in φ are determined by fitting the expression to

the dataset D. The loss function `(·, ·) measures the distance between the output from the

candidate expression φ(xi, c) ∈ R and the ground truth yi ∈ R. A common choice of the
1↑The code is at https://bitbucket.org/xlnxyx/racing_cvgp.

155

https://bitbucket.org/xlnxyx/racing_cvgp

(b) controlled variable trials with .xc = {x1, x2}
Controlled to be the same

0.62 1.0 0.1 0.18
0.62 1.0 0.2 0.36
0.62 1.0 0.3 0.54

x1 x2 x3 y

(a) controlled variable trials with .xc = {x2, x3}

Controlled to be the same

Dataset D2

Dataset D1Reduced form expression tree

-1.0 0.5 0.16 0.20
0.92 0.5 0.16 0.21
0.72 0.5 0.16 0.22

x1 x2 x3 y

+
x3c1

×
cosc2

x1

+
c1

Reduced form expression tree

Figure 7.3. (a) When controlling variables x2 and x3, the ground-truth ex-
pression φ = x2 cos(x1)+x3 reduces to c1 cos(x1)+c2. (b) Controlling variables
x1 and x2 reduces the ground-truth to c1x3.

loss function is Normalized Mean Squared Error (NMSE). Symbolic regression is shown to

be NP-hard [195], due to the exponentially large size of all the candidate expressions Π.

Genetic Programming for Symbolic Regression. Genetic Programming (GP) has been

a popular method for solving symbolic regression. The core idea of GP involves managing

a pool of candidate expressions, noted as P . In each generation, these candidates undergo

mutation and mating steps with certain probabilities. The mutation operations randomly

replace, insert a node in the expression tree, or delete a sub-tree. The mating operations

pick a pair of parent expression trees and exchange their two random sub-trees. In the selec-

tion step, expressions with the highest fitness scores, are chosen as candidates for the next

generation. Here the fitness scores (noted as o ∈ RN) indicate the closeness of the predicted

outputs to the ground-truth outputs, like the negative NMSE. Over several generations, the

expressions that fit the data well, exhibiting high fitness scores, survive in the pool of can-

didate solutions. The best expressions discovered throughout all generations are recorded as

hall-of-fame solutions, noted as H.

156

7.2.2 Control Variable Trials

In a regression problem, control variable trials study the relationship between a few input

variables and the output with the remaining input variables fixed to be the same [185]. The

control variable idea was historically proposed to discover natural physical law, known as the

BACON system [189–191]. Recently, this idea has been explored for solving multivariable

symbolic regression problems [242], i.e., CVGP.

Let xc ⊆ x denote those control variables, and the rest are free variables. The values

of controlled variables are fixed in each trial, which behaves exactly the same as constants

for the learning method. In the controlled setting, the ground-truth expression behaves the

same after setting those controlled variables as constants, which is noted as the reduced form

expression. See Figure 7.3 for two reduced form expressions with different control variable

settings.

For a single control variable trial in symbolic regression, the corresponding dataset D =

{(xi, yi)}m
i=1 is first generated, where the controlled variables are fixed to one value and

the remaining variables are randomly assigned. That is xi,k = xj,k for the control variable

xk (xk ∈ xc) and 1 ≤ i, j ≤ N . Figure 7.3 gives two example datasets generated from

different control variable trials. Given a reduced form expression and corresponding dataset,

the values of open constants in the expression are determined by gradient-based optimizers,

like the BFGS algorithm. In Figure 7.3(a), the optimal values of open constants are c1 =

0.5, c2 = 0.16. Similarly in Figure 7.3(b), we have c1 = 1.8. The loss values (defined in

Equation (7.1)) of these two controlled variable trails over the dataset D1 and dataset D2

are equal to 0, indicating the optimal fitness scores.

The CVGP is built on top of the above control variable trials and the GP algorithm.

To fit an expression of n variables, CVGP initially only allows variable x1 to vary and

controls the values of all n − 1 variables (i.e., xc = x\{x1}). Using GP as a subroutine,

CVGP finds a pool of expressions {φ1, . . . , φNp} which best fit the data from this controlled

experiment. Notice {φ1, . . . , φNp} are restricted to contain only one free variable x1 and Np is

the pool size. This fact renders fitting them a lot easier than directly fitting the expressions

involving all n variables. A small error implies that φi is close to the ground truth reduced

157

to the one free variable. In the 2nd round, CVGP adds a second free variable x2 and starts

fitting {φ′
1, . . . , φ′

Np
} using the data from control variable experiments involving the two free

variables x1, x2. After n rounds, the expressions in the CVGP pool consider all n variables.

Note that CVGP assumes the existence of a DataOracle that allows for query a batch data

with specified control variables.

7.3 Methodology

We first brief the issue with a fixed experiment schedule for the existing CVGP method in

discovering symbolic regression. Then we present our racing experiment schedule for control

variable genetic programming (Racing-CVGP).

7.3.1 Motivation

We define an experiment schedule, noted as π, as a sequence of variables controlled over all

the rounds in CVGP. We use Figure 7.2 to demonstrate different experiment schedules for the

discovery of the ground-truth expression φ = cos(x1)x2 +x3. In Figure 7.2(c), CVGP runs an

experiment schedule with control variables {x1, x2} in the first round and runs with control

variables {x1} in the second round and with no variable control ∅ in the last round. The

corresponding experiment schedule is π = ({x1, x2}, {x1}, ∅). Similarly, Figure 7.2(b) shows

the default experiment schedule of CVGP that control variables {x2, x3} initially and then

control variable {x3}, finally control no variable ∅, which is denoted as π = ({x2, x3}, {x3}, ∅).

Our key observations are as follows: (1) The experiment schedule plays a vital impact on

the performance of CVGP than other components in the algorithm. (2) Some expressions

are much easier to detect for specific experiment schedules. The existing CVGP method

only considers a fixed experiment schedule π = ({x2, . . . , xn}, {x3, . . . , xn}, . . . , {xn}, ∅) for

discovering expression involving n variables. This fixed experiment schedule leads to sub-

optimal performance of CVGP over some expressions, requiring more training data and

computational time than other alternative schedules. See Figure 7.1 for an empirical eval-

uation of different experiment schedules over the final identified expressions by the same

CVGP method. See more examples in Appendix E.4.1.

158

In Figure 7.2, we use the discovery of an expression φ = cos(x1)x2 +x3 from the Feynman

dataset as an example. The alternative (green) experiment schedule πg in Figure 7.2(c) is

favorable while the default (red) schedule πr in Figure 7.2(b) is not. In Figure 7.2(a), we

visualize 3 necessary steps to reach from randomly initialized expression tree “x1” to the final

tree “c1 + c2 cos(x1)” in Figure 7.2(b). Every step of editing is conducted by the GP and

requires drawing batches of training data to fit every intermediate expression. The edited

subtrees are highlighted in blue. In comparison, it takes 1 step of edits in the tree to reach

the first expression “c1+x3” in the green experiment schedule, which leads to faster discovery

using less training data. Following the green experiment schedule πg, it takes 1 step of edits

to reach the expression at the second round “c1x2 + x3” and the last round “cos(x1)x2 + x3”.

Therefore, CVGP needs much more data and time in the 1st round following the default

(red) experiment schedule πr. The alternative (green) experiment schedule πg is easier for

the GP algorithm to discover the ground-truth expression using less data and time.

Directly evoking CVGP as a subroutine with multiple experiment schedules will not solve

the problem. The expression in Figure 7.1 has 24 different experiment schedules. The total

running time is summarized in Figure 7.6. In general, for an expression involving n variables,

there are n! many experiment schedules. It is time-intractable to run CVGP with all the

experiment schedules for real-world scale problems.

To tackle the above issue, we propose a racing scheme over the experiment schedules.

Our main principles are (1) maintaining multiple experiment schedules rather than one, and

(2) allowing promising experiment schedules to survive while letting unfavorable schedules

early stop. Our Racing-CVGP has a much higher chance of detecting high-quality expression

using less training data and computational time than the existing CVGP.

Specifically, we implement a schedule selection procedure. Every expression in the pop-

ulation pool φ ∈ P is attached with its own experiment schedule. In each round, we execute

GP over all the expressions in the population pool for several generations. At the end of

every round, the racing selection scheme removes (resp. preserves) those expressions with

bad (resp. good) experiment schedules, based on their fitness scores. So those schedules that

lead to higher fitness scores have a higher probability of survival.

159

We use Figure 7.2 to visualize the process of our Racing-CVGP. We first initialize the

population pool P in GP with several expressions for each control variable setting. We ran-

domly generate simple expressions involving only x1 with the control variables being {x2, x3},

where every expression is attached with a (partial) experiment schedule π = ({x2, x3}). We

repeat this random expression generation for all the rest n− 1 control variable settings. For

the 1st round, the GP algorithm is evoked over the population pool for several generations.

Then we rank the expressions in the pool by the fitness score of the expression, where those

expressions with higher fitness scores rank at the top of the pool. We only preserve top Np

expressions in population pool P . Since it is much easier to detect c1 + x3 under control

variable {x1, x2} setting, the preserved majority expressions are attached with the experi-

ment schedule π1 = {x1, x2}. This ensures that we early stop the unfavorable experiment

schedule π = {x2, x3} in Figure 7.2(b). Prior to the 2nd round, we randomly set free one

variable from π1. Figure 7.2(c) set the free variable x2 and only variable x1 is controlled

in the 2nd round. In the 3rd round, the majority of the expressions in the population is

attached to the experiment schedule πg = ({x1, x2}, {x1}, ∅), since every change over the

expression tree is reasonable. The total computational resources are saved from spending

time searching for the expression tree in Figure 7.2(b) to explore expressions with experiment

schedule π = ({x1, x2}, {x1}) in Figure 7.2(c).

7.3.2 Racing Control Variable Genetic Programming

The high-level idea of Racing-CVGP is building simple to complex symbolic expressions

involving increasingly more variables following those promising experiment schedules.

Notations. Denote K multiple control variable trials as a tuple 〈φ, o, c, xc, π, {Dk}K
k=1〉.

Here φ stands for the symbolic expression; the fitness scores o ∈ RK for expression φ indicates

the closeness of predicted outputs to the ground-truth outputs; c ∈ RK×L are the best-fitted

values (by gradient-based optimizers) to open constants. Here L is the number of open

constants in the expression φ; xc ⊆ x is the set of control variables; π is the (partial)

experiment schedule that leads to the current expression φ. Dk = {(xi, yi)}m
i=1 (1 ≤ k ≤ K)

160

is a randomly sampled batch of data from DataOracle with control variables xc. m denotes

the batch size of the data.

Initialization. For single variable xi ∈ x, we create a set of candidate expressions that

only contain variable xi and save them into the population pool P . Then we apply a GP-

based algorithm to find the best-fitted expressions, which is referred to as the BuildGPPool

function. The initialization step corresponds to Lines 2-6 in Algorithm 7.

Execution Pipeline. Given the current control variables xc, we first evoke the DataOracle

to generate data batches {Dk}K
k=1. This corresponds to changing experimental conditions

in real science experiments. We then fit open constants in the candidate expression φnew

with the data batches by gradient-based optimizers like BFGS [243]. This step is noted as

the Optimize function. Then we obtain the fitness score vector o and solutions to open

constants c. We save the tuple 〈φ, o, c, π, xc〉 into new population pool Pnew. This step

corresponds to Lines 8-11 in Algorithm 7.

Then GP algorithm is applied for #Gen generations to search for optimal structures of

the expression trees in the population pool Pnew. The function GP is a minimally modified

genetic programming algorithm for symbolic regression, which is detailed in Appendix E.1.

The key differences between classic GP and our Racing-CVGP are

1. During mutation, our Racing-CVGP only alters the mutable nodes of the candidate

expression trees. In classic GP, all the tree nodes are mutable, while in Racing-CVGP,

the mutable nodes of the expression trees and set of operators Op are preset by the

FreezeEquation.

2. Mating is only applied over a pair of expressions with the same set of controlled vari-

ables in our Racing-CVGP. Classic GP, a random pair of expressions is selected for the

mating operation.

3. Optimize operation in Racing-CVGP dynamically samples data with oracle Do under

control variable setup, whereas classic GP uses data with no variable controlled.

We preserve Np best equations in the population P . Every expression is evaluated with the

different data from its own control variables. An unfavorable (partial) experiment schedule

161

will be removed at this step when the corresponding expression φ has a low fitness score.

The schedules in the pruned population pool P indicate that they are favorable.

Key information is obtained by examining the outcomes of K-trials control variable

experiments: (1) Consistent close-to-zero fitness value, implies that the fitted expression is

close to the ground-truth equation in the reduced form. That is ∑K
k=1 I(ok ≤ ε) should equal

to K, where I(·) is an indicator function and ε is the threshold for the fitness scores. (2) Given

that the equation is close to the ground truth, an open constant having similar best-fitted

values across K trials suggests that the open constants are stand-alone. Otherwise, that

open constant is a summary constant, that corresponds to a sub-expression involving those

control variables xc. The j-th open constant is a standalone constant when the empirical

variance of its fitted values across K trials is less than a threshold ε′. The above steps are

noted as FreezeEquation function. This freezing operation reduces the search space and

accelerates the discovery.

Finally, we randomly drop a control variable in xc and update the schedule π for each

equation φ in the population pool P . After n rounds, we return the equations in hall-of-fame

H with best fitness values over all the schedules. Equations in H are evaluated on data with

no variable controlled.

Running Time Analysis. The major hyper-parameters that impact the running time of

Racing-CVGP are 1) the number of genetic operations per round M ; 2) total rounds n; 3)

the maximum size of population pool Np. A rough estimation of the time complexity of the

proposed Racing-CVGP is O(nMNp), which is the same as the CVGP algorithm. Another

implicit factor of running time is the number of open constants |c| for every expression

φ(x, c). An expression with more open constants needs more time for optimizers (like BFGS

and CG) or more advanced optimizers (like Basin Hopping [244]) to find the solutions. We

leave it to the empirical time evaluation in Figure 7.6.

Connection to Existing Methods. Our work is relevant to a line of work [189–194] that

implemented human scientific discovery using AI, pioneered by the BACON systems [189–

191]. While BACON’s discovery was driven by rule-based engines, our Racing-CVGP uses

modern learning approaches such as genetic programming.

162

Algorithm 7: Racing Control Variable Genetic Programming
Input: #input variables n; operator set Op; DataOracle.
Output: #genetic operations per rounds #Gen; Size of population pool Np;

#experiment trials K.
1 P = {};
2 H = {};
3 for i← 1 to n do
4 xc = {x1, . . . , xn} \ {xi} ; // initialize
5 P ← P ∪ BuildGPPool(xc, Op ∪ {const, xi}));
6 for i← 1 to n do
7 for 〈φnew, π, xc〉 ∈ P do
8 {Dk}K

k=1 ← DataOracle(xc, K) ; // control variable trials
9 o, c← Optimize(φnew, {Dk}K

k=1);
10 P ← P ∪ {〈φ, o, c, π, xc〉};
11 P ,H ← GP(P ,H, DataOracle, Op ∪ {const, xi});
12 for 〈φ, π, xc〉 ∈ P do
13 φ←FreezeEquation(φ) ; // racing schedule
14 randomly drop a variable in xc;
15 save xc into π;

16 return the set of hall-of-fame equations H.

7.4 Related Work

Early works in symbolic regression [199, 200] use heuristic search. Genetic programming

is effective in searching for good candidates [178, 184, 201]. Reinforcement learning-based

methods use a risk-seeking policy gradient to find the expressions [180, 181]. Other works

use RL to adjust the probabilities of genetic operations [202]. Some works reduce the search

space by considering the composition of base functions [203, 204].

Current research efforts are devoted to searching for polynomials with a few variables [205],

time series equations [206], and equations in physics [201]. Multivariable symbolic regres-

sion is challenging since the search space increases exponentially w.r.t. the number of input

variables. Existing works for multi-variable regression are based on pre-trained encoder-

decoder methods with a massive training dataset (e.g., millions of data points [207]), and

even larger generative models (e.g., millions of parameters [208]). Our Racing-CVGP is a

tailored algorithm to solve multi-variable symbolic regression.

163

The choice of variables is an important topic in AI, including variable ordering in decision

diagrams [245], variable selection in tree search [246], variable elimination in probabilistic

inference [247, 248] and backtracking search in constraint satisfaction problems [249–251].

Our method is one variant of variable ordering in symbolic regression.

Our work is also relevant to experiment design, which considers drawing a minimum

amount of data for determining coefficients in linear regression models [252, 253]. Our work

considers reducing the amount of total data needed to uncover the ground truth expression.

7.5 Experiments

This section demonstrates that Racing-CVGP finds the expressions with the smallest

Normalized Mean-Square Errors (NMSE) (in Table 7.1 and Table 7.2) and takes less compu-

tational time (in Figure 7.4), among all competing approaches on several noiseless datasets.

In the ablation studies, we show our Racing-CVGP is consistently better than the baselines

when evaluated in different metrics (in Figure 7.5). Also, our Racing-CVGP methods save

a great portion of time than evoke CVGP with all the possible schedules.

7.5.1 Experimental Settings

Datasets. We consider several publicly available and multivariable datasets, including 1)

Trigonometric datasets [242], 2) Livermore2 datasets [180], and 3) Feynamn datasets [254].

Evaluation Metrics. We consider two evaluation criteria for the learning algorithms: 1)

The goodness-of-fit measure (NMSE), indicates how well the learning algorithms perform in

discovering symbolic expressions. The medians (50%) and 75%-percentiles of the NMSE are

reported. We report median values instead of means due to outliers (see Ablation Studies).

This is a common practice for combinatorial optimization problems. 2) The total running

time of each learning algorithm.

Baselines. We consider the following baselines based on evolutionary algorithms: 1) Ge-

netic Programming (GP) [236]. 2) Eureqa [237]. We also consider a series of baselines using

reinforcement learning: 3) Priority queue training (PQT) [238]. 4) Vanilla Policy Gradient

(VPG) [239]. 5) Deep Symbolic Regression (DSR) [180]. 6) Neural-Guided Genetic Pro-

164

(3, 2, 2) (4, 4, 6) (5, 5, 5) (6, 6, 10) (8, 8, 12)
50% 75% 50% 75% 50% 75% 50% 75% 50% 75%

Racing-CVGP (ours) < 1E-6 < 1E-6 0.016 0.021 0.043 0.098 0.069 0.104 0.095 0.286
CVGP 0.039 0.083 0.028 0.132 0.086 0.402 0.104 0.177 T.O. T.O.

GP 0.043 0.551 0.044 0.106 0.063 0.232 0.159 0.230 T.O. T.O.
Eureqa < 1E-6 < 1E-6 0.024 0.122 0.158 0.377 0.910 1.927 0.162 2.223

DSR 0.227 7.856 2.815 9.958 2.558 3.313 6.121 16.32 0.335 0.410
PQT 0.855 2.885 2.381 13.84 2.168 2.679 5.750 16.29 0.232 0.313
VPG 0.233 0.400 2.990 11.32 1.903 2.780 3.857 19.82 0.451 0.529

GPMeld 0.944 1.263 1.670 2.697 1.501 2.295 7.393 21.71 T.O. T.O.
SPL 0.010 0.011 0.144 0.231 0.147 0.280 0.472 0.627 0.599 0.746

Table 7.1. On Trigonometric datasets, median (50%) and 75%-quantile
NMSE values of the expressions found by all the algorithms. Our Racing-
CVGP finds symbolic expressions with the smallest NMSEs. “T.O.” implies
the algorithm is timed out for 48 hours. The 3-tuples at the top (·, ·, ·) in-
dicate the number of input variables, singular terms, and cross terms in the
expression.

gramming Population Seeding (GPMeld) [181]. 7) Symbolic Physics Learner (SPL) [240].

The remaining details are provided in Appendix E.3.

7.5.2 Experimental Result Analysis

Goodness-of-fit Benchmark. Our Racing-CVGP attains the smallest median (50%) and

75%-quantile NMSE values among all the baselines when evaluated on selected Trigonomet-

ric, Livermore2, and Feynman datasets (Table 7.1). This shows that our method can better

handle multivariable symbolic regression problems than the current best algorithms in this

area. For the Trigonometric dataset with n = 8 variables, both the GP and CVGP take

more than 2 days to find the optimal expression. The reason is that there are too many

open constants in the expressions in the population pool, making the optimization problem

itself time-consuming to find the solution. This behavior is another indication that CVGP

is stuck at some unfavorable experiment schedule.

Empirical Running Time Analysis. We summarize the running time analysis in Fig-

ure 7.4. Our Racing-CVGP method takes less time than CVGP as well as the rest baselines.

The main reason is early stop those unfavorable experiment schedules. See Appendix E.4

for more figures.

165

102 104

Time Usage (Mins)

Racing-CVGP(ours)

CVGP

GP

GPMeld

PQT

DSR

VPG

sin cos (4, 4, 6)

102 104

Time Usage (Mins)

sin cos (5, 5, 5)

Figure 7.4. On selected Trigonometric datasets, quartiles of the total running
time of all the methods. Our Racing-CVGP method takes less time than
CVGP by early stopping those unfavorable experiment schedules.

100 101

MSE

Racing-CVGP(ours)

CVGP

GP

VPG

PQT

DSR

GPMeld

sin, cos (4, 4, 6)

100 101

NMSE

sin, cos (4, 4, 6)

Figure 7.5. On selected Trigonometric datasets, MSE and NMSE evaluation
metrics of the expressions found by different algorithms.

Ablation Studies We collect the benchmark of different evaluation metrics in Figure 7.5,

i.e., MSE and NMSE, during testing over the selected Trigonometric datasets. The RMSE

and NRMSE evaluation metrics are available in Appendix E.4.

We further collect the time comparison between our Racing-CVGP and the CVGP with

all the experiment schedules in Figure 7.6. The quartiles of time distribution over 10 random

expressions with 4 variables show that Our Racing-CVGP saves a great portion of the time

compared with CVGP with all the schedules.

166

Livermore2 dataset Feynman dataset
(n = 4) (n = 5) (n = 6) (n = 4) (n = 5)

50% 75% 50% 75% 50% 75% 50% 75% 50% 75%
Racing-CVGP (ours) < 1E-6 2.03E-3 0.004 0.047 0.001 0.073 0.015 0.195 0.577 0.790

CVGP 0.052 0.810 0.275 1.007 0.328 1.012 1.002 1.010 1.001 1.002
GP 0.059 0.962 0.331 1.003 1.001 1.026 1.003 1.010 1.002 1.011

Eureqa 0.508 0.980 0.083 0.249 0.026 0.302 0.026 0.397 0.434 0.943
DSR 0.030 0.048 0.050 0.284 0.230 0.486 0.216 0.920 0.976 1.001
PQT 0.042 0.063 0.074 0.227 0.170 0.410 0.172 0.765 1.003 1.027
VPG 0.037 0.074 0.093 0.322 0.206 0.535 0.188 0.971 1.006 1.025

GPMeld 0.029 0.061 0.049 0.259 0.144 0.504 0.177 0.708 0.940 1.002
SPL 0.035 0.463 0.181 0.201 0.229 1.005 0.143 0.542 0.632 1.002

Table 7.2. On Livermore2 and Feynman datasets, median (50%) and 75%-
quantile NMSE values of the symbolic expressions found by all the algorithms.
Our Racing-CVGP finds symbolic expressions with the smallest NMSEs. n is
the number of independent variables in the expression.

103 104 105

Time Usage (Mins)

Racing-CVGP (ours)

CVGP (all schedules)

CVGP

sin cos (4, 4, 6)

Figure 7.6. On a selected Trigonometric dataset, quartiles of the total run-
ning time of Racing-CVGP, CVGP, and CVGP with all the experiment sched-
ules. Our Racing-CVGP saves a great portion of time compared with CVGP
with all the schedules for expressions with n = 4 variables.

7.6 Summary

In this chapter, we propose Racing Control Variable Genetic Programming (Racing-

CVGP) for symbolic regression with many independent variables. Our Racing-CVGP can

accelerate the regression process by discovering equations from promising experiment sched-

ules and early stop those unfavorable experiment schedules. We evaluate Racing-CVGP on

several synthetic and real-world datasets corresponding to true physics laws. We demonstrate

that Racing-CVGP outperforms CVGP and a series of symbolic regressors that discover

equations from fixed datasets.

167

8. Vertical Symbolic Regression via Deep Policy Gradient

8.1 Introduction

Exciting progress has been made to accelerate scientific discovery using Artificial In-

telligence (AI) [209, 255, 256]. Symbolic regression, as an important task in AI-driven

scientific discovery, distills physics models in the form of symbolic equations from experi-

ment data [177]. Notable progress in symbolic regression encompasses diverse methodolo-

gies, includes search-based methods [200], genetic programming [177, 178], Monte Carlo tree

search [240, 257, 258], and deep reinforcement learning [180, 181].

Recently, Vertical Symbolic Regression (VSR) [242, 259] has been proposed to expedite

the discovery of symbolic equations with many independent variables. Unlike previous ap-

proaches, VSR reduces the search spaces following a vertical path – it extends from reduced-

form equations involving a subset of independent variables to full-fledged ones, adding one

variable into the equation at a time. Figure 8.1 gives an example discovery of Joule’s law

Q ∝ I2RT [260], where Q is heat, I is current, R is resistance, and T is time. VSR first holds

I and R as constants and finds Q ∝ T . Next, I is introduced with targeted experiments that

study the effect of I on Q. Such rounds repeat until all factors are considered. Compared

with the horizontal paths, which model all independent variables simultaneously, vertical

discovery can be significantly cheaper because the search spaces of the first few steps are

exponentially smaller than the full search space.

Meanwhile, deep learning, especially deep policy gradient [180], has greatly boosted the

performance of symbolic regression approaches. However, VSR was implemented using ge-

netic programming. Although we hypothesize deep neural nets should boost VSR, directly

integrating deep neural nets to predict the symbolic equation tree in each vertical expansion

step encounters difficulties. This will result in (1) difficulty passing gradients from trees to

deep neural nets and (2) complications concatenating deep networks for predictions in each

vertical expansion step. We provide a detailed analysis of the difficulty in Appendix F.1.

In this work, we propose Vertical Symbolic Regression using Deep Policy Gradient

(Vsr-Dpg). We demonstrate that Vsr-Dpg can recover ground-truth equations involving

50 variables, which is beyond both deep reinforcement learning-based approaches and the

168

Full hypothesis space

Horizontal path

Vertical path

Q ∝ T

Q ∝ I2T

Q ∝ I2RT

Reduced hypothesis space

Reduced hypothesis space

Candidate expression

Correct expression A

C1 × T

Deep RL agent

A × T

C2 × I2 × T

C3 × R × I2 × T

A × I2 × T

Deep RL agent

Deep RL agent

Figure 8.1. Our Vsr-Dpg follows a vertical path (colored blue) better than
the horizontal path (colored red), in the scientific discovery of Joule’s first law.
(Left) The vertical discovery starts by finding the relationship between two
factors (Q, T) in a reduced hypothesis space with other factors held constant.
It then finds models in extended hypothesis space with three factors (Q, I, T),
and finally in the full hypothesis space. Searching following the vertical paths
is way cheaper since the sizes of the reduced hypothesis spaces in the first few
steps are exponentially smaller than the full hypothesis space. (Right) Our
Vsr-Dpg extends the equation in each step. The placeholder A indicates a
sub-expression.

previous VSR variant (i.e., VSR-GP). Our Vsr-Dpg solves the above difficulty based on

the following key idea: each symbolic expression can be treated as repeated applications of

grammar rules. Hence, discovering the best symbolic equations in the space of all candidate

expressions is viewed as the sequential decision-making of predicting the optimal sequence

of grammar rules.

In Figure 8.1(right), the expansion from C1T to C2I
2T is to replace constant C1 with

a sub-expression C2I
2. We define a context-free grammar on symbolic expression, denoting

the rules that certain constants can be replaced with other variables, constants, or sub-

expressions. All candidate expressions that are compatible with C1T can be generated by

repetitively applying the defined grammar rules in different order. Vsr-Dpg generates many

169

sub-expressions (including C2I
2) by sequentially sampling rules from the Recurrent Neural

Networks (RNN). A vertical discovery path is built on top of this sequential decision-making

process of reduced-form symbolic expressions. The RNN is trained to generate expansions

that lead to high fitness scores on the dataset. In this regard, we train the RNN to maximize

a policy gradient objective, similar to that proposed in Petersen et al. The main difference

is the RNN in our Vsr-Dpg predicts the next rules in the vertical discovery space, while

the model from Petersen et al. predicts the next math token in the expression tree in the

horizontal discovery space.

In experiments, we consider several challenging multi-variable datasets of algebraic equa-

tions and of ordinary differential equations in material science and biology. (1) In Table 8.1,

our Vsr-Dpg attains the smallest median NMSE values in 7 out of 8 datasets, against

current popular baselines including VSR-GP. The main reason is deep networks offer more

parameters than GP, which can better adapt to different datasets and sample higher-quality

expressions from the networks. (2) Further analysis on the best-discovered equation (in Ta-

ble 8.3) shows that Vsr-Dpg uncovers up to 50% of the exact governing equations with 5

input variables, where the baselines only attain 0%. (3) In Table 8.2, our Vsr-Dpg can find

high-quality expressions on datasets with up to 50 variables, because of the vertical discovery

idea. (4) On discovery of ordinary differential equations in Table 8.4, our Vsr-Dpg also

improves over current baselines.1

8.2 Preliminaries

Symbolic Regression aims to discover governing equations from the experimental data. An

example of such mathematical expression is Joule’s first law: Q = I2RT , which quantifies the

amount of heat Q generated when electric current I flows through a conductor with resistance

R for time T . Formally, a mathematical expression φ connects a set of input variables x

and a set of constant coefficients c by mathematical operators. The possible mathematical

operators include addition, subtraction, multiplication, division, trigonometric functions, etc.

The meaning of these mathematical expressions follows their standard arithmetic definition.
1↑The code is at https://github.com/jiangnanhugo/VSR-DPG.

170

https://github.com/jiangnanhugo/VSR-DPG

(d) no control(b) control x3, x4 (c) control x4

Multiple
Trial Data

(a) control x2, x3, x4

Best
Expression

0.3 0.5 0.1 0.7 -0.32
0.6 0.5 0.1 0.7 -0.29
0.2 0.5 0.1 0.7 -0.33
0.9 0.5 0.1 0.7 -0.26

 x1 x2 x3 y x4
0.6 0.1 0.8 0.4 0.44
0.4 0.9 0.8 0.4 0.04
0.3 0.2 0.8 0.4 0.16
0.7 0.4 0.8 0.4 0.40

 x1 x2 x3 y x4
0.7 0.8 0.1 0.2 -0.09
0.5 0.4 0.6 0.2 0.22
0.2 0.1 0.9 0.2 0.16
0.3 0.5 0.1 0.2 -0.07

 x1 x2 x3 y x4
0.2 0.4 0.2 0.7 -0.24
0.9 0.3 0.5 0.5 0.30
0.5 0.4 0.8 0.1 0.36
0.1 0.8 0.7 0.6 -0.41

 x1 x2 x3 y x4

x1 × C1−C2 x1 × C3−x2 × C4 x1 × x3−x2 × C5

Input:

Output:

(e) control variables x2, x3, x4

Available

grammar

rules

A → (A + A)
A → (A − A)
A → A × A
A → A ÷ A
A → const
A → x1

RNN RNN RNN

A → constA

A → (A − A) A → x1

The expression is x1 × C1−C2

Categorial

distribution

A → A × A

A → (A − A)

RNN

A → x1

A → const

RNN

A → const

A → A × A

(f) control variables x3, x4

Available

grammar

rules

A → (A + A)
A → (A − A)
A → A × A
A → A ÷ A
A → const
A → x2

RNN RNN RNN

A → const

A → A × AA → const A → x2

The expression is x1 × C3−x2 × C4

x1 × A − A

RNN

A → A × A A → x2

A → const

x1 × x3 − x2 × x4

 … …

0.6 0.1 0.8 0.4 0.44
0.4 0.9 0.8 0.4 0.04
0.3 0.2 0.8 0.4 0.16
0.7 0.4 0.8 0.4 0.40

 x1 x2 x3 y x4
0.3 0.5 0.1 0.7 -0.32
0.6 0.5 0.1 0.7 -0.29
0.2 0.5 0.1 0.7 -0.33
0.9 0.5 0.1 0.7 -0.26

 x1 x2 x3 y x4

0.2 0.4 0.2 0.7 -0.24
0.9 0.3 0.5 0.5 0.30
0.5 0.4 0.8 0.1 0.36
0.1 0.8 0.7 0.6 -0.41

 x1 x2 x3 y x4
0.7 0.8 0.1 0.2 -0.09
0.5 0.4 0.6 0.2 0.22
0.2 0.1 0.9 0.2 0.16
0.3 0.5 0.1 0.2 -0.07

 x1 x2 x3 y x4

Figure 8.2. The proposed Vsr-Dpg for the discovery of expression φ =
x1 × x3 − x2 × x4. (a) Initially, a reduced-form equation φ = x1 × C1 − C2
is found, in which variables x2, x3, x4 are held constant and only variable x1
is allowed to vary. C1 and C2 (colored blue) are summary constants, which
are sub-expressions containing the controlled variables. The open constants in
the expression are fitted by the corresponding controlled variable data. (b)
In the second stage, this equation is expanded to x1 × C3 − x2 × C4. (c,
d) This process continues until the ground-truth equation φ = x1x3 − x2x4
is found. (e, f) Under those controlled variables, the deep recurrent neural
network predicts a categorical distribution over the available grammar rules.
The controlled variables are excited in the grammar rules. The best-predicted
expression in (e) is reformulated as the start symbol in (f), that is x1×A−A.

Given a dataset D = {(xi, yi)N
i=1|xi ∈ Rn, yi ∈ R} with N samples, symbolic regression

searches for the optimal expression φ∗, such that φ∗(xi, c) ≈ yi. From an optimization

perspective, φ∗ minimizes the averaged loss on the dataset:

φ∗ ← arg min
φ∈Π

1
N

N∑
i=1

`(φ(xi, c), yi). (8.1)

Here Π is the set of all candidate mathematical expressions; c denotes the constant coeffi-

cients in the expression; `(·, ·) denotes a loss function that measures the difference between

the output of the candidate expression φ(xi, c) and the ground truth yi. The set of all possi-

ble expressions, i.e., the hypothesis space Π, can be exponentially large. As a result, finding

the optimal expression is challenging and is shown to be NP-hard [195].

171

Deep Policy Gradient for Symbolic Regression. Recently, a line of work proposes the

use of deep reinforcement learning (RL) for searching the governing equations [180, 181, 238].

They represent expressions as binary trees, where the interior nodes of the tree correspond

to mathematical operators and leaf nodes of the tree correspond to variables or constants.

The key idea is to model the search of different expressions, as a sequential decision-making

process for the preorder traversal sequence of the expression trees, using an RL algorithm.

A reward function is defined to measure how well a predicted expression can fit the dataset.

The deep RNN is used as the RL agent for predicting the next possible node in the expression

tree at every step of decision-making. The parameters of the RNN are trained using a policy

gradient.

Control Variable Experiment. studies the relationship between a few input variables

and the output in the regression problem, with the remaining input variables fixed to be

the same [185]. In the controlled setting, the ground-truth equation behaves the same after

setting those controlled variables as constants, which is noted as the reduced-form equation.

For example, the ground-truth equation φ = x1 × x3 − x2 × x4 in Figure 8.2(a) is reduced

to x1 × C1 − C2 when controlling x2, x3, x4. Figure 8.2(b,c) presents other reduced-form

equations when the control variables are changed. For the corresponding dataset D, the

controlled variables are fixed to one value and the remaining variables are randomly assigned.

See Figure 8.2(a,b,c) for example datasets generated under different controlling variables.

Vertical Symbolic Regression. starts by finding a symbolic equation involving a small

subset of the input variables and iteratively expands the discovered expression by introducing

more variables. VSR relies on the control variable experiments introduced above. VSR-

GP was the first implementation of vertical symbolic regression using genetic programming

(GP) [242]. To fit an expression of n variables, VSR-GP initially only allows variable x1

to vary and controls the values of all the rest of the variables. Using GP as a subroutine,

VSR-GP finds a pool of expressions {φ1, . . . , φm} which best fit the data from this controlled

experiment. Notice {φ1, . . . , φm} are restricted to contain only one free variable x1 and m is

the pool size. A small error indicates φi is close to the ground truth reduced to the one free

variable and thus is marked unmutable by the genetic operations in the following rounds. In

the 2nd round, VSR-GP adds a second free variable x2 and starts fitting {φ′
1, . . . , φ′

m} using

172

the data from control variable experiments involving the two free variables x1, x2. After n

rounds, the expressions in the VSR-GP pool consider all n variables. Overall, VSR expedites

the discovery process because the first few rounds of VSR are significantly cheaper than the

traditional horizontal discovery process, which searches for optimal expression involving all

input variables.

8.3 Methodology

Motivation. The prior work of VSR-GP uses genetic programming to edit the expression

tree. GP is not allowed to edit internal nodes in the best-discovered expression trees from

the previous vertical discovery step, to ensure later genetic operations do not delete the prior

knowledge on the governing equation. However, this idea cannot be easily integrated with

deep RL-based symbolic regressors.

We explored using deep neural networks in vertical symbolic regression to predict the

symbolic equation tree in each vertical expansion step, as detailed in Appendix F.1. However,

we encountered two main issues: (1) difficulty in passing gradients from trees to deep neural

nets. We need different constraints to embed into the output of RNN to ensure the whole

model follows the vertical discovery idea. (2) complexity in concatenating deep networks

for predictions at each vertical expansion step. The underlying issue is the expression tree

representation.

Our solution is to adopt a new representation for expressions. We extend the context-free

grammar definition for symbolic expressions, where a sequence of grammar rules uniquely

corresponds to an expression. We view the prediction of symbolic expressions as a sequential

decision-making process, selecting grammar rules step-by-step. The RNN predicts grammar

rules instead of nodes in the expression tree. The best-discovered reduced-form equation

is converted into the start symbol in the grammar, ensuring that the predicted expression

from our RNN is always compatible with the prior knowledge of the governing equation.

This reduces the hypothesis space and accelerates scientific discovery, as other non-reducible

expressions are never sampled from the RNN.

173

Main Pipeline. Figure 8.1 shows our deep vertical symbolic regression (Vsr-Dpg) pipeline.

The core idea is to construct increasingly complex symbolic expressions involving more input

variables, based on control variable experiments with fewer controlled variables.

To fit an expression of n variables, we first hold n − 1 variables as constant and allow

only one variable to vary. We aim to find the best expression φ1, that fits the data in

this controlled experiment. We use the RNN as the RL agent to search for the best possible

expression, which is achieved by using the RNN to sample sequences of grammar rules defined

for symbolic equations. Every sequence of rules is converted into an expression, where the

constants in the expression are fitted with the dataset. The parameters of the RNN model

will be trained through the policy gradient objective. The expression with the best fitness

score is returned as the prediction of the RNN. A visualized process is in Figure 8.1(a, e).

Following the idea in VSR, the next step is to classify each constant as either a summary

constant or a standalone constant. (1) A constant not relevant to any controlled variables is

considered standalone and is preserved in subsequent rounds. (2) A constant that is a sub-

expression involving controlled variables is labeled as a summary type and will be expanded

in subsequent rounds. In our implementation, a constant with high variance in fitted values

across multiple control variable experiments is classified as a summary type; otherwise, it is

classified as standalone.

Assuming we find the correct reduced-from equation φ1 after several learning epochs. To

ensure Vsr-Dpg does not forget this discovered knowledge of the first round, we want all

the expressions to be discovered in the following rounds can be reduced to φ1. Therefore,

we construct φ1 as the start symbol for the following round by replacing every summary

constant in φ1 as a non-terminal symbol in the grammar (noted as A), indicating a sub-

expression. For example, in Figure 8.2(a), both of them are summary constants so the 1st

round best-predicted expression x1 × C1 − C2 is converted to the start symbol x1 × A − A

for the second round.

In the second round, Vsr-Dpg adds one more free variable and starts fitting φ2 using

the data from control variable experiments involving two free variables. Similar to the first

round, we restrict our search to sub-expressions with the second variable. It is achieved by

limiting the output vocabulary of the RNN model. In Figure 8.2(f), the RNN model finds

174

an expression φ2 = x1 ×C3 − (x2 ×C4). This means that the RL agent learns to expand C1

with another constant C3 and C2 with sub-expression (x2×C4), based on the best-discovered

result of the 1st round φ1 = x1 × C1 − C2.

Vsr-Dpg introduces one free variable at a time and expands the equation learned in

the previous round to include this newly added variable. This process continues until all

the variables are considered. After n rounds, we return the equations with the best fitness

scores. The predicted equation will be evaluated on data with no variable controlled. See

the steps in Figure 8.1(b,c,d) for a visual demonstration. We summarize the whole process

of Vsr-Dpg in Algorithm 9 in Appendix F.2. The major difference of this approach from

most state-of-the-art approaches is that those baselines learn to find the expressions in the

full hypothesis space with all input variables, from a fixed dataset collected before training.

Our Vsr-Dpg accelerates the discovery process, because of the small size of the reduced

hypothesis space, i.e., the set of candidate expressions involving only a few variables. The

task is much easier than fitting the expression in the full hypothesis space involving all input

variables.

8.3.1 Expression Represented as Grammar Rules

We propose to represent symbolic expression by extending the existing context-free gram-

mar [257]. A context-free grammar is represented by a tuple (V, Σ, R, S), where V is a set

of non-terminal symbols, Σ is a set of terminal symbols, R is a set of production rules and

S is a start symbol. In our formulation, (1) Σ is the set of input variables and constants

{x1, . . . , xn, const}. (2) The set of non-terminal symbols V represents sub-expressions, like

{A}. Here A is a placeholder symbol. (3) The set of production rules R represents math-

ematical operations such as addition, subtraction, multiplication, and division. That is

{A → (A + A), A → (A − A), A → A × A, A → A ÷ A}, where → indicates that the left-

hand side is replaced with the right-hand side. (4) The start symbol S is extended to be

A, x1 × A − A, or other symbols constructed from the best-predicted expression under the

controlled variables.

175

A → const

A → A × A

A → x1
A → const

A → (A − A)
A A − A

x1 × A − Ax1 × C1−Ax1 × C1−C2

A × A−AStart

symbol

Final
expression

(a)

A → A × A

A → x2
A → const

x1 × A − A
A → const

x1 × C1−A x1 × C3−A × A

x1 × C1−x2 × Ax1 × C3 − x2 × C4

Start

symbol

Final
expression

(b)

Figure 8.3. Convert a sequence of grammar rules into a valid expression.
Each rule expands the first non-terminal symbol in the squared box. The
parts that get expanded are color-highlighted.

Starting with the start symbol, successively applying the grammar rules in different

orders results in different expressions. Each rule expands the first non-terminal symbol

in the start symbol. An expression with only terminal symbols is a valid mathematical

expression, whereas an expression with a mixture of non-terminal and terminal symbols is

invalid. The expression can also be represented as a binary tree. We chose the grammar

representation over the binary tree representation because it simplifies the vertical symbolic

regression process, avoiding gradient passing and heavy engineering issues.

Figure 8.3 presents two examples of constructing the expression φ from the start symbol

using a given sequence of grammar rules. In Figure 8.3(a), we first use the subtraction rule

A→ (A−A), indicating that the symbol A in expression φ = A is expanded to φ = (A−A).

By repeatedly using grammar rules to expand the non-terminal symbols, we eventually arrive

at our desired expression φ = x1×C1−C2. In Figure 8.3(b), the start symbol is x1×A−A.

The rule A→ const replaces the first non-terminal symbol with a constant C1, resulting in

x1×C1−A. Finally, we obtain a valid expression x1×C1−C2. Figure 8.3 provides another

example conversion with the start symbol x1 × A− A.

176

8.3.2 Expression Sampling from Recurrent Network

In our vertical symbolic regression setting, the input and output are in the set of gram-

mar rules that cover each input variable, constants, and math operations. We create an

embedding layer for the input, noted as Embd. For each input rule r ∈ R, its d-dimensional

embedding vector is Embd(r) ∈ Rd.

Sampling Procedure. The RNN module samples an expression by sampling the sequence

of grammar rules in a sequential decision-making process. Denote the sampled sequence of

rules as τ = (τ1, τ2, . . .). Initially, the RNN takes in the start symbol τ1 = S and computes

the first step hidden state vector h1. At t-th time step, RNN uses the predicted output from

the previous step as the input of current step τt. RNN computes its hidden state vector ht

using the embedding vector of input token τt and the previous time-step hidden state vector

ht−1. The linear layer and softmax function are applied to emit a categorical distribution

p(τt+1|τt, ht) over every token in the output vocabulary, which represents the probability of

the next possible rule in the half-completed expression pθ(τt+1|τt, . . . , τ1). The RNN samples

one token from the categorical distribution τt+1 ∼ p(τt+1|τt, ht) as the prediction of the next

possible rule. To conclude, the computational pipeline at the t-th step is shown below:

τt = Embd(τt),

ht = RNN(τt, ht−1),

st = Wht + b,

p(τt+1 = ri|τt, ht) = exp(st,i)∑
rj∈R exp(st,j)

, for ri ∈ R

(8.2)

The weight matrix W ∈ Rd×|R| and bias vector b ∈ Rd are the parameters of the linear layer.

The last row in Equation 8.2 is the softmax layer. The sampled rule rt+1 will be the input

for the t + 1-th step. We denote θ as the total parameters of the embedding layer, the RNN,

and the linear layer.

After L steps, we obtain the sequence τ = (τ1, . . . , τL) with probability pθ(τ) = ∏L−1
t=1 pθ(τt+1|τ1, . . . , τt).

We convert this sequence into an expression by following the procedure described in Sec-

tion 8.3.1. If we reach the end of the sequence while there are still non-terminal symbols in

177

the converted expression, we randomly add rules containing only terminal symbols to com-

plete the expression. Conversely, if we obtain a valid expression before the sequence ends,

we disregard the remaining elements of the sequence and return the valid expression.

Policy Gradient-based Training. We follow the reinforcement learning formulation to

train the parameters of the RNN module [261]. The sampled rules before the current step t,

i.e., (τ1, . . . , τt), is viewed as the state of the t-th step for the RL agent. Those rules in the

output vocabulary are the available actions for the RL agent. In the formulated decision-

making process, the RNN takes in the current state and outputs a distribution over next-step

possible actions. The objective of the RL agent is to learn to pick the optimal sequences of

grammar rules to maximize the expected rewards. Denote the converted expression from τ as

φ. A typical reward function is defined from the fitness score of the expression reward(τ) =

1/(1 + NMSE(φ)). The objective that maximizes the expected reward from the RNN model

is defined as:

J(θ) = Eτ∼pθ(τ) [reward(τ)] ,

where pθ(τ) is the probability of sampling sequence τ from the RNN.

In the next step, the gradient with respect to the objective ∇θJ(θ) needs to be estimated.

We follow the classic REINFORCE policy gradient algorithm [239]. We first sample several

times from the RNN module and obtain N sequences (τ 1, . . . , τN), an unbiased estimation

of the gradient of the objective is computed as ∇θJ(θ) ≈ 1
N

∑N
i=1 reward(τ i)∇θ log pθ(τ i).

The parameters of the deep network are updated by the gradient descent algorithm with

the estimated policy gradient value. In the literature, several practical tricks are proposed

to reduce the estimation variance of the policy gradient. A common choice is to subtract a

baseline function b from the reward, as long as the baseline is not a function of the sample

batch of expressions. Our implementation adopts this trick and the detailed derivation is

presented in Appendix E.1.

Throughout the whole training process, the expression with optimal fitness score from

all the sampled expressions is used as the prediction of Vsr-Dpg at the current round.

Start Symbol Construction in Vertical Discovery. Given the best-predicted equation

φ and controlled variables xc, the following step is to construct the start symbol of the next

178

rounds. This operation ensures all the future expressions can be reduced to any previously

discovered equation thus all the discovered knowledge is remembered. It expedites the dis-

covery of symbolic expression since other expressions that cannot be reduced to φ will never

be sampled from the RNN. It requires first classifying the type of every constant in the ex-

pression into stand-alone or summary type, through multi-trail control variable experiments.

Then we replace each summary constant with a placeholder symbol (i.e., “A”) indicating a

sub-expression containing controlled variables.

Following the procedure proposed in [242], we first query K data batches (D1, . . . , DK)

with the same controlled variables xc. The controlled variables take the same value within

each batch while taking different values across data batches. We fit open constants in

the candidate expression φ with each data batch by the gradient-based optimizer, like

BFGS [243]. We obtain multiple fitness scores (o1, . . . , oK) and multiple solutions to open

constants (c1, . . . , cK). By examining the outcomes of K-trials control variable experiments,

we have: (1) Consistent close-to-zero fitness scores imply the fitted expression is close to the

ground-truth equation in the reduced form. That is ok ≤ ε for all 1 ≤ k ≤ K, where ε is

the threshold for the fitness scores. (2) Conditioning on the result in case (1), the j-th open

constant is a standalone constant when the empirical variance of its fitted values across K

trials is less than a threshold ε′. In practice, if the best-predicted expression by the RNN

module is not consistently close to zero, then all the constants in the expression are summary

constants. Finally, the start symbol is obtained by replacing every summary constant with

the symbol “A” according to our grammar.

8.4 Related Work

Recently AI has been highlighted to enable scientific discoveries in diverse domains [256,

262, 263]. Early work in this domain focuses on learning logic (symbolic) representa-

tions [211]. Recently, there has been extensive research on learning algebraic equations

from data [180, 181] and learning differential equations from data [213–223]. In this domain,

a line of works develops robots that automatically refine the hypothesis space, some with

179

human interactions [192, 193, 209, 224]. These works are related to ours because they also

actively explore the hypothesis spaces, while they are in biology and chemistry.

Existing works on multivariate regression predominantly rely on pre-trained encoder-

decoder structures with extensive training datasets [207], and larger-scale deep models [208].

Our Vsr-Dpg method is tailored to solve multivariate symbolic regression.

The idea of using a control variable experiment tightly connects to the BACON sys-

tem [189–194]. While their methods are rule-based systems due to historical limitations, our

approach leverages contemporary deep recurrent neural networks.

Our method is also related to symbolic regression methods using probabilistic context-

free grammar [257, 264, 265]. While they use a fixed probability to sample rules, we use a

deep neural network to learn the probability distribution.

Our Vsr-Dpg is also tightly connected to deep symbolic regression [180, 181]. We both

use deep recurrent networks to predict a sequence of tokens that can be composed into a

symbolic expression. However, their method predicts the preorder traversal sequence for the

expression tree while our method predicts the sequence of production rules for the expression.

8.5 Experiment

8.5.1 Regression on Algebraic Equations

Experiment Settings. For the dataset on algebraic expressions, we consider the 8 groups

of expressions from the Trigonometric dataset [242], where each group contains 10 randomly

sampled expressions. In terms of baselines, we consider (1) evolutionary algorithms: Ge-

netic Programming (GP), Eureqa [237] and Control Variable Genetic Programming (VSR-

GP) [242]. (2) deep reinforcement learning: Priority queue training (PQT) [238], Vanilla

Policy Gradient (VPG) [239], Deep Symbolic Regression (DSR) [180], and Neural-Guided

Genetic Programming Population Seeding (GPMeld) [181]. (3) Monte Carlo Tree Search:

Symbolic Physics Learner (SPL) [240], (4) pretrained Transformer: end-to-end Transformer

(E2ETransformer) [208]. In terms of evaluation metrics, we use the normalized mean-squared

error (NMSE) of the best-predicted expression by each algorithm, on a separately-generated

testing dataset. We report the median instead of the mean value. Symbolic regression be-

180

Methods (2, 1, 1) (3, 2, 2) (4, 4, 6) (5, 5, 5) (5, 5, 8) (6, 6, 8) (6, 6, 10) (8, 8, 12)
VSR-GP 0.005 0.028 0.086 0.014 0.066 0.066 0.104 T.O.

GP 7E−4 0.023 0.044 0.063 0.102 0.127 0.159 0.872
Eureqa <1E-6 <1E-6 0.024 0.158 0.284 0.433 0.910 0.162

SPL 0.006 0.033 0.144 0.147 0.307 0.391 0.472 0.599
E2ETransformer 0.018 0.0015 0.030 0.121 0.072 0.194 0.142 0.112

DSR < 1E-6 0.008 2.815 2.558 2.535 0.936 6.121 0.335
PQT 0.020 0.161 2.381 2.168 2.482 0.983 5.750 0.232
VPG 0.030 0.277 2.990 1.903 2.440 0.900 3.857 0.451

GPMeld < 1E−6 0.112 1.670 1.501 2.422 0.964 7.393 T.O.
Vsr-Dpg (ours) < 1E-6 < 1E-6 < 1E-6 < 1E-6 0.026 0.063 0.114 0.101

Table 8.1. On selected algebraic equation datasets, median (50%-quartile)
of NMSE values of the best-predicted expressions found by all the algorithms.
The set of mathematical operator is Op = {+,−,×, sin, cos, const}. The 3-
tuples at the top (·, ·, ·) indicate the number of free variables, singular terms,
and cross terms in the ground-truth expressions generating the dataset. Op

stands for the set of allowed operators. “T.O.” implies the algorithm is timed
out for 48 hours.

longs to combinatorial optimization problems, which have no mean values and are sensitive

to outliers. The detailed settings are in Appendix F.3.

Goodness-of-fit Comparison. We consider our Vsr-Dpg against several challenging

datasets involving multiple variables. In Table 8.1, we report the median NMSE on the

selected algebraic datasets. Our Vsr-Dpg attains the smallest median NMSE values in 7

out of 8 datasets, against a line of current popular baselines including the original VSR-GP.

The main reason is deep networks offer many more parameters than the GP algorithm, which

can better adapt to different datasets and sample higher-quality expressions from the deep

networks.

Extended Large-scale Comparison. In the real world, scientists may collect all available

variables that are more than needed into symbolic regression, where only part of the inputs

will be included in the ground-truth expression. We randomly pick 5 variables from all the n

variables and replace the appeared variable in expressions confined as (5, 5, 5) in Table 8.1.

In Table 8.2, we collect the median NMSE values on this large-scale dataset setting. Our

Vsr-Dpg scales well because it first detects all the contributing inputs using the control

181

Total input variables n in the data
Methods n = 10 n = 20 n = 30 n = 40 n = 50

SPL 0.386 0.554 0.554 0.714 0.815
GP 0.159 0.172 0.218 0.229 0.517

DSR 0.284 0.521 0.522 0.660 0.719
VPG 0.415 0.695 0.726 0.726 0.779
PQT 0.384 0.488 0.615 0.620 0.594

Vsr-Dpg < 1E-6 < 1E-6 < 1E-6 0.002 0.021

Table 8.2. On large-scale algebraic equation dataset, with reported Median
NMSE values, our Vsr-Dpg scales better to more variable settings than base-
lines due to the control variable experiment.

Methods (2, 1, 1) (3, 2, 2) (4, 4, 6) (5, 5, 5)
SPL 20% 10% 0% 0%

E2ETransformer 0% 0% 0% 0%
VSR-GP 60% 50% 0% 0%

VSR-DPG (ours) 100% 70% 60% 40%

Table 8.3. On selected algebraic equations, the exact recovery rate over the
best-predicted found by all the algorithms. Our Vsr-Dpg has a higher rate
of recovering the ground-truth expressions compared to baselines.

variable experiments. Notice that those baselines that are easily timeout in this setting are

excluded for comparison.

Exact Recovery Comparison. We compare if each learning algorithm finds the exact

equation, the result of which is collected in Table 8.3. The discovered equation by each

algorithm is further collected in Appendix F.4. We can observe that our Vsr-Dpg has a

higher rate of recovering the ground-truth expressions compared to baselines. This is because

our method first use a control variable experiment to pick what are the contributing variables

to the data and what are not.

8.5.2 Regression on Ordinary Differential Equations

Task Definition. The temporal evolution of the dynamic system is modeled by the time

derivatives of the state variables. Let x be the n-dimensional vector of state variables, and

ẋ is the vector of their time derivatives. The ordinary differential equation (ODE) is of the

form ẋ = φ(x, c), where constant vector c ∈ Rm are parameters of the dynamic system.

182

Following the definition of symbolic regression on ODE [240, 265], given a trajectory dataset

of state variable and its time derivatives {(x(ti), ẋ(ti))}N
i=1, the symbolic regression task is

to predict the best expression φ(x, c) that minimizes the average loss on trajectory data.

Other formulations of this problem [266] assume we have no access to its time derivatives,

i.e., {(ti, x(ti))}N
i=1.

Experiment Setting. We consider recent popular baselines for differential equations, in-

cluding (1) SINDy [214], (2) ODEFormer [266], (3) Symbolic Physics Learner (SPL) [240].

(4) Probabilistic grammar for equation discovery (ProGED) [264]. In terms of the dataset,

we consider the Lorenz Attractor with n = 3 variables, Magnetohydrodynamic (MHD) tur-

bulence with n = 6 variables, and Glycolysis Oscillation with n = 7 variables. All of them

are collected from [214]. To evaluate whether the algorithm identifies the ground-truth ex-

pression, we use the Accuracy metric based on the coefficient of determination (R2). The

detailed experiment configurations are in Appendix F.3.

Result Analysis. The results are summarized in Table 8.4. Our proposed Vsr-Dpg dis-

covers a set of differential expressions with much higher quality than the considered baselines.

We further provide a visual understanding of the proposed Vsr-Dpg method in Figure 8.4.

The data of our Vsr-Dpg are drawn from the intersection of the mesh plane and the curve

on the Lorenz attractor. In comparison, the current baselines draw data by picking a random

trajectory or many random points on the curve. We notice the ODEFormer is pre-trained

on differential equations up to two variables, and thus does not scale well with more variable

settings. The predicted differential equations by each algorithm are in Appendix F.4.

8.6 Summary

In this chapter, we propose Vsr-Dpg to accelerate the discovery of governing equa-

tions involving many variables, which is beyond the capabilities of current state-of-the-art

approaches. Vsr-Dpg follows a vertical discovery path, building equations involving more

and more input variables using control variable experiments. Vsr-Dpg has the potential

to supercharge current popular approaches because the first few steps following the vertical

discovery route are much cheaper than discovering the equation in the full hypothesis space.

183

Lorenz Attractor MHD Turbulence Glycolysis Oscillations
(3 variables) (5 variables) (7 variables)

SPL 100% 50% 14.2%
SINDy 100% 0% 0%

ProGED 0% 0% 0%
ODEFormer 0% 0% NA

Vsr-Dpg (ours) 100% 100% 87%

Table 8.4. On the differential equation dataset, (R2 ≥ 0.9999)-based accuracy
is reported over the best-predicted expression found by all the algorithms. Our
Vsr-Dpg method can discover the governing expressions with a much higher
accuracy rate than baselines.

−20
0

20x1
−40
−20

0
20

x 2

0
20
40
60

x 3

−40−20
0

20x1
−20

0
20

x 2

0
20
40
60

x 3

Figure 8.4. Visualization of Vsr-Dpg controlling variables x1 (Left) and x2
(Right) for the Lorenz attractor. The data of our Vsr-Dpg are drawn from
the intersection of the mesh plane and the curve on the Lorenz attractor. In
comparison, the ODEFormer draws data by picking a consecutive sequence
{(ti, x(ti))}N

t=0 without knowing its time derivative on the curve.

Experimental results show Vsr-Dpg can uncover complex equations with more variables

than what current approaches can handle.

184

9. Active Symbolic Discovery of Ordinary Differential Equations

via Phase Portrait Sketching

9.1 Introduction

Uncovering the governing principles of physical systems from experimental data is a cru-

cial task in AI-driven scientific discovery [177, 215, 216]. Recent advancements have intro-

duced various methods for uncovering knowledge of dynamical systems in symbolic Ordinary

Differential Equation (ODE) form, leveraging techniques such as genetic programming [184],

sparse regression [214, 267], Monte Carlo tree search [240], pre-trained Transformers [268],

and deep reinforcement learning [269].

State-of-the-art approaches discover the symbolic ODEs using a fixed, pre-collected train-

ing dataset. However, their performance is often heavily influenced by the quality of the

collected data. As illustrated in Figure 9.1, we find that the best-discovered ODEs from the

most recent baseline, that is ODEFormer [266], may fit some test trajectories well, but fit

other test trajectories poorly. This observation highlights the need for new methods that

actively query informative trajectory data to improve ODE discovery.

Suppose trajectory data can be obtained from a data oracle by specifying the initial

conditions. To minimize excessively querying the oracle, a key challenge emerges: given a

set of candidate ODEs predicted by a learning method, how can initial conditions within the

variable intervals be strategically selected to obtain informative data?

Previous work in the active learning literature typically maintains a large set of data,

evaluates their informativeness, and then queries the most informative data points [226, 270].

However, the chaotic nature of dynamical systems complicates the direct application of such

methods. The Butterfly effect states that small variations in initial conditions can lead to

vastly different outcomes. For instance, as illustrated in Figure 9.2(c), selecting initial condi-

tions near (3, 0) for φ1 can result in trajectories that diverge in opposite directions. Effectively

addressing this variability requires densely sampling initial conditions to thoroughly explore

the space. Existing active learning-based approaches will be computationally prohibitive and

demand significant memory resources, particularly in high-dimensional dynamical systems.

185

0 5 10

Time (sec)
(a)

−1.0

−0.5

0.0

0.5

1.0

V
ar

ia
b

le
V

al
u

e
Predicted ODE by ODEFormer
φ = (1.04x2,−0.02− 0.77x1)

0 5 10

Time (sec)
(b)

−1.0

−0.5

0.0

0.5

1.0

Predicted ODE by APPS (our)
φ = (x2, 0.895 sin(x1))

0 5 10

Time (sec)
(c)

−7.5

−5.0

−2.5

0.0

2.5

Predicted ODE by ODEFormer
φ = (1.04x2,−0.02− 0.77x1)

0 5 10

Time (sec)
(d)

−7.5

−5.0

−2.5

0.0

2.5

Predicted ODE by APPS (our)
φ = (x2, 0.895 sin(x1))

Predicted x1

True x1

Predicted x2

True x2

Figure 9.1. The performance of predicted ODE from passively-learned base-
line is heavily influenced by the collected training data while our Apps method
is not. The dots represent noisy ground-truth trajectory data, and the lines
show predicted values of state variables under identical initial conditions. (a,
b) Our Apps and the baseline predict accurately for the trajectory starting
at x0 = (0, 1). (c, d) For the trajectory starting at x0 = (4,−1), the baseline
performs poorly while Apps maintains accuracy.

To address these challenges, we propose a novel approach to data querying. We consider

selecting a batch of close-neighbor initial conditions instead of individual initial conditions.

This process begins by sketching the dynamics in smaller regions, identifying an informative

region in the phase space, and then sampling a batch of initial conditions from this region.

Figure 9.2(c) illustrates this idea using phase portraits for three candidate ODEs. Region u2

is chosen because the trajectories generated by the candidate ODEs exhibit greater diver-

gence in this region than region u1. Section 9.3 provides detailed region selection criteria.

Thus, we introduce Active Symbolic Discovery of Ordinary Differential Equations via

Phase Portrait Sketching (Apps), which consists of two key components: (1) a deep se-

quential decoder, which guides the search for candidate ODEs by sampling from the defined

grammar rules. (2) a data query and evaluation module that actively queries the data us-

ing sketched phase portraits and evaluates the candidate ODE. In experiments, we evaluate

Apps against several popular baselines on two large-scale ODE datasets. 1) Apps achieves

the lowest median NMSE (in Table 9.1 and Table 9.2) across multiple datasets under noise-

less and noisy settings. 2) Compared to other active learning strategies, Apps is more time

efficient in benchmark datasets (in Table 9.3). 1.
1↑The code is at https://github.com/jiangnanhugo/APPS-ODE.

186

https://github.com/jiangnanhugo/APPS-ODE

9.2 Preliminaries

Ordinary Differential Equations (ODEs) describe the evolution of dynamical systems

in continuous time. Let vector x(t) = (x1(t), . . . , xn(t)) ∈ Rn be the state variables of the

system of time t. The temporal evolution of the system is governed by the time derivatives

of the state variables, denoted as dxi

dt
. The general form of the ODE is written as:

dxi

dt
= fi(x(t), c), for i = 1, . . . , n,

where fi can be a linear or nonlinear function of the state variables x and coefficients c.

The ODE is noted as a tuple (f1, f2, . . . , fn) for simplicity in this chapter. Function fi is

symbolically expressed using a subset of input variables in x and coefficients in c, connected

by mathematical operators such as addition and cosine functions. For example, we use

(10 sin(x2), 4 cos(x1 + 2)) to represent the ODE:

dx1

dt
= 10 sin(x2),

dx2

dt
= 4 cos(x1 + 2).

Given an initial condition x0, the solution to the ODE is a trajectory of state variables

(x0, x(t1), . . . , x(tk)) observed at discrete time points (t1, . . . , tk), possibly with noise. The

trajectory is noted as τ for simplicity.

Phase Portrait is a qualitative analysis tool for studying the behavior of dynamical sys-

tems [271]. Phase portraits are plotted using the state variables x and their time derivatives

(f1, . . . , fn). A curve in the phase portrait is a short trajectory of the system over time from

a given initial condition. The arrow on the curve indicates the direction of change. By exam-

ining these curves, we can infer key properties of the system, such as stability, equilibrium

points, and periodic behavior. Figure 9.2(c) shows phase portraits for three different ODEs.

These portraits are generated by sampling random initial conditions within the variable

intervals and evolving the system for a short time.

Symbolic Discovery of Ordinary Differential Equations seeks to uncover the symbolic

form of an ODE that best fits a dataset of observed trajectories. According to [265] and [240],

we are given a dataset of collected trajectories D = {τ1, . . . , τN} and a set of mathematical

187

operators {+,−,×,÷, sin . . .}. Denote φ(x(t), c) as a candidate ODE, where c indicates

the coefficients. The objective is to predict the symbolic form of the ODE that minimizes

the distance between the predicted and observed trajectories, which is formalized as an

optimization problem:

arg min
φ∈Π

1
|D|

∑
τ∈D

k∑
i=1

`(x(ti), x̂(ti)), where x̂(ti) = x0 +
∫ ti

0
φ(x(t), c)dt. (9.1)

Π is the set of all possible ODEs, trajectory τ := (x0, x(t1), . . . , x(tk)), x(t) is the ground-

truth observations of the state variable. Trajectory (x0, x̂(t1), . . . , x̂(tk)) is the predicted state

variables according to the candidate ODE φ. The predicted trajectory (x0, x̂(t1), . . . , x̂(tk))

is obtained by numerically integrating the ODE from the given initial state x0 to the final

time tk. The loss function ` computes the summarized distance between the predicted and

ground-truth trajectories at each time step. A typical loss is the Normalized Mean Squared

Error (NMSE, defined in Appendix F.3). Except for the above formulation, prior works

in symbolic regression use the approximated time derivative as the label to discover each

expression fi separately, which is known as gradient matching. We leave the discussion to

Related Work.

Recent research explored deep reinforcement learning to discover the governing equations

from data [180, 181, 238]. In these approaches, each expression is represented as a binary

tree, with interior nodes corresponding to mathematical operators and leaf nodes to variables

or constants. An ODE with n variables is represented by n trees. The key idea is to frame

the search for different ODEs as a sequential decision-making process based on the preorder

traversal sequence of expression trees. A high reward is assigned to candidates which fit the

data well. The search is guided by a deep sequential decoder, often based on RNN, LSTM,

or decoder-only Transformer, that learns the optimal probability distribution for selecting

the next node in the expression tree at each step. The parameters of the decoder are trained

with the policy gradient algorithm.

188

°4 °2 0 2 4
x1

°2

°1

0

1

2

x 2

Predicted ODE f3 = (0.9 sin(x2), x1 + 3)

°4 °2 0 2 4
x1

°2

°1

0

1

2

x 2
Predicted ODE f2 = (1.04x2, °0.02 ° 0.77x1)

region u1

region u2

region u1

region u2

(c) region is selected to draw data other than region for its higher informativeness.u2 u1

°4 °2 0 2 4
x1

°2

°1

0

1

2

x 2

Predicted ODE f1 = (10 sin(x2), 4 cos(x1 + 2))

region u1

region u2

(b) convert a sequence of rules into an ODE by context-free grammar: .ϕ = (x2, c1 sin(x1))

Input

Output

ϕ → A, B

Categorical distribution

(a) sample grammar rules sequentially from the decoder.

B → B × B B → const B → sin(x1)A → x2

B → B × B A → x2

Sequential decoder

Input embedding

multi-head attention

Linear layer

Softmax

ϕ → A, B ϕ → A, B × B ϕ → x2, B × B ϕ → x2, c1 × B ϕ → x2, c1 × sin(x1)
B → sin(x1)B → B × B A → x2 B → const

B → const

Figure 9.2. The pipeline of Apps for symbolic discovery of ODEs consists
of 3 steps: (a) ODEs are sampled from the sequential decoder by iteratively
sampling grammar rules. The predicted rule at each step serves as input for the
decoder in the subsequent step. (b) The sampled sequence of grammar rules
is converted into a valid ODE with n = 2 variables. Each rule expands the
first non-terminal symbol, with the expanded parts highlighted in blue colors
for clarity. (c) The phase portrait for the predicted ODEs (e.g., φ1, φ2, φ3)
is sketched, and regions with high informativeness, such as u2, are identified
to query the new trajectory data. In region u2, φ1 exhibits a saddle point,
φ2 moves downward, and φ3 moves upward. In contrast, in region u1, all
trajectories move from right to left. Differentiating the predicted expressions
is easier in region u2 than in region u1.

9.3 Methodology

9.3.1 Motivation

For the task of symbolic discovery of ODEs, we observe that existing methods frequently

overfit the training data. This issue is illustrated in Figure 9.1 using ODEFormer [266],

a recent baseline designed to learn ODEs from a fixed training dataset. In the example,

the best-predicted ODE is given by φ = (1.04x2,−0.02 − 0.77x1). We evaluate φ on noisy

189

test trajectories (depicted as blue dots) with two distinct initial conditions. While φ closely

aligns with the trajectory originating at x0 = (0, 1), as shown by the green curve, it produces

substantial errors for a trajectory starting at x0 = (4,−1), where the predicted curve deviates

significantly from the ground truth.

This observation motivates us to actively identify informative trajectory data to better

differentiate candidate expressions during the learning process. Each trajectory is gener-

ated by querying the data oracle with a specified initial condition x0. An initial condition

is deemed informative if the resulting trajectory for different candidate ODEs diverges sig-

nificantly. The key challenge lies in selecting such informative initial conditions from the

variable intervals for a given set of candidate ODEs.

For addressing this issue, a common approach in active learning [226] is to maintain a

large set of potential initial conditions, evaluate their informativeness, and query the most

informative points. However, the butterfly effect in chaos theory [272] suggests existing works

in active learning are not directly applicable. The chaotic behavior states small changes

in initial conditions can lead to drastically different outcomes in dynamical systems. For

example, as shown in Figure 9.2(c), selecting points near (3, 0) (inside the red region u2)

for φ1 can lead to trajectories diverging either towards the top right or the bottom left.

Such chaotic behavior necessitates the existing active learning methods to maintain a large

set of initial conditions to adequately cover the domain, which becomes infeasible for high-

dimensional dynamical systems.

To mitigate this issue, we consider selecting a beam of near-neighbor points rather than

individual points. We propose first to select a highly informative region and sample a batch

of initial conditions within that region. In this research, the region is represented as an

n-dimensional cube of fixed width. A region is regarded as informative if the majority of

sampled initial conditions within it yield informative trajectories for the given candidate

ODEs.

Figure 9.2(c) illustrates our region-based approach using the phase portraits of three

candidate ODEs: φ1, φ2, and φ3. Each curve in the phase portrait represents a short trajec-

tory, with its starting point and direction indicating the initial conditions and the direction

of evolution over time. A closer look reveals significant differences in dynamics within re-

190

gion u2 across the ODEs. While the curves in region u1 = [−2, 0] × [−2, 0] consistently

move from the bottom right to the top left in all phase portraits, the trajectories in region

u2 = [2, 4] × [−1, 1] exhibit drastically different behaviors. This indicates that trajectories

originating from region u2 are more divergent and thus more informative.

Main Procedure. The proposed Apps, illustrated in Figure 9.2, comprises two key com-

ponents: (1) Deep Sequential Decoder. This module predicts candidate ODEs by sampling

sequences of grammar rules defined for symbolic ODE representation. (2) Data Sampling

Module. Using the proposed phase portrait sketching, this module selects a batch of infor-

mative ground-truth data points.

Throughout the training process, the reward for the predicted ODEs is computed using

the queried data, and the decoder parameters are updated via policy gradient estimation.

Among all sampled candidates, Apps selects the ODE with the smallest loss value (as defined

in Equation 9.1) as the final prediction.

Connection to Existing Approaches. Like [266], Apps employs a Transformer-based

decoder. However, unlike [266], which learns from fixed data, Apps actively queries new

data. The learning objective of Apps is inspired by [180], where both approaches guide the

search for the optimal equation as a decision-making process over a sequence of tokens.

Existing active learning methods, particularly in symbolic regression, have largely over-

looked the chaotic behaviors inherent in dynamical systems. For instance, [273] proposed a

separate generative model for sampling informative data, assuming that input data within

a small region should exhibit minimal output divergence. However, this assumption fails to

hold in the context of dynamical systems. Additionally, [274] formulated an optimization

problem based on the Query-By-Committee (QBC) method in active learning, to find those

informative initial conditions. But the optimization needs to maintain a large set of data

points, to account for the chaotic behaviors. The rest of the discussion is provided in the

Related Work.

191

9.3.2 The Learning Pipeline

Data Assumption. Our method relies on the assumption that we can query a data oracleO

by specifying the initial conditions x0 and discrete times T = (t1, . . . , tk). The oracle executes

O(x0, T) and returns a (noisy) observation of the trajectory at the specified discrete times

T . In science, this data query process is achieved by conducting real-world experiments with

specified configurations. Recent work [275–277] also highlight the importance of having the

oracle that can actively query data points, rather than learning from a fixed dataset.

Expression Representation. To enable the sequential decoder to predict an ODE by

generating a sequence step-by-step, we extend the context-free grammar to represent an

ODE as a sequence of grammar rules [240, 257, 265]. The grammar is defined by the tuple

〈V, Σ, R, S〉, where V is a set of non-terminal symbols, Σ is a set of terminal symbols, R is

a set of production rules and S ∈ V is the start symbol.

More specifically, each component of the grammar is: 1) For the non-terminal symbols,

we use A to represent a sub-expression for dx1
dt

and B to represent a sub-expression for
dx2

/
dt. For dynamical systems with n variables, we use n distinct non-terminal symbols.

2) The terminal symbols include the input variables and constants {x1, . . . , xn, const}. 3)

The production rules correspond to mathematical operations. For example, the addition

operation is represented as A → (A + A), where the rule replaces the left-hand symbol

with the right-hand side. 4) The start symbol is redefined as “φ→ A, B”, where the comma

notation indicates that A and B represent two separate equations in a two-variable dynamical

system. Similarly, there will be n non-terminal symbols connected by n − 1 comma for n-

dimensional dynamical system.

Starting from the start symbol, different symbolic ODEs are constructed by applying the

grammar rules in various sequences. An ODE is valid if it only consists of terminal symbols;

otherwise, it is invalid. Figure 9.2(b) provides an example of constructing the ODE dx1
dt

= x2,
dx2
dt

= −0.9 sin(x1) from the start symbol φ→ A, B using a sequence of grammar rules. The

replaced parts are color highlighted. Initially, the multiplication rule B → B×B is applied,

replacing the symbol B in f2 = B with B × B, resulting in φ → A, B × B. Next, the rule

A → x2 is applied, yielding φ → x2, B × B. Iteratively applying the rules, we eventually

192

obtain φ → x2, c1 × sin(x1), which corresponds to one candidate ODE φ = (x2, c1 sin(x1)).

The coefficient c1 = −0.9 is obtained when fitting to the trajectory data. The procedure of

coefficient fitting is described in Appendix G.2 “Implementation of Apps” section.

Sampling ODEs from Decoder. The proposed Apps is built on top of a sequential de-

coder, which generates different ODEs as a sequential decision-making process. The decoder

can be RNN, LSTM, or the decoder-only Transformer. The input and output vocabulary is

the set of allowed rules covering input variables, coefficients, and mathematical operators.

Predicting ODEs involves using the decoder to sample a sequence of grammar rules, where

each sequence corresponds to a candidate ODE using previously defined grammar. The ob-

jective of Apps is to maximize the probability of sampling those ODEs that fit the data

well. This is achieved through the REINFORCE objective, where the objective computes

the expected reward of ODE to the data. In our formulation, the reward is evaluated on

selected data by the phase portrait sketching module.

As shown in Figure 9.2(a), the decoder receives the start symbol s0 = “φ → A, B” and

outputs a categorical distribution pθ(s1|s0) over rules in the output vocabulary. This distribu-

tion represents the probabilities of possible next rules in the partially completed expression.

One token is drawn from this distribution, s1 ∼ p(s1|s0), which serves as the prediction for

the second rule and is used as the input for the next step. At t-th step, the predicted output

from the previous step st is used as the input for the current step. The decoder draws rule

st+1 from the probability distribution st+1 ∼ pθ(st+1|s0, . . . , st). This process iterates until

maximum steps are reached, with a probability of pθ(s) = ∏m−1
i=1 pθ(si|s1, . . . , si−1). The sam-

pled sequence is converted into an expression following the definition previously described

in “Expression Representation”.

Active Query Data with Phase Portrait Sketching. To evaluate the goodness-of-fit

of generated ODEs from the decoder and differentiate which one is better, we propose com-

paring the phase portrait of predicted ODEs. We sketch the phase portrait using collections

of short trajectories, all starting from the same initial conditions and sharing the same time

sequence.

Following our discussion in the “Motivation” section, a region is considered informative

for distinguishing between two candidate ODEs if their sketched phase portraits differ. To

193

identify such regions, we randomly sample several and sketch the phase portraits for all

candidate ODEs within each. The most informative region is then selected, and we query

the data oracle (noted as O) for the ground-truth trajectory in that region.

Formally, assume we are given M ODEs, {φ1, . . . , φM}, and K randomly selected regions,

{u1, . . . , uK}. Each region uk is a Cartesian product of n intervals, expressed as uk =

[a1, b1]× · · · × [an, bn]. To sketch the dynamics of candidates in the region uk, we uniformly

sample L points in uk, x1, . . . , xL, as initial conditions. For region uk, the trajectory τm,k,l =

(xl, x̂(t1), . . . , x̂(tk)) is generated by the expression φm, starting from the l-th initial condition

xl and evolving over time according to the numerical integration x̂(ti) = xl+
∫ ti

0 φm(x(t), c) dt

for ti ∈ {t1, . . . , tk}. The resulting L short trajectories form a sketched phase portrait for

ODE φm in the region uk.

Two expressions, φm and φm′ , have similar sketches in region uk if their corresponding

trajectories, starting from the same initial condition, are close. Specifically, this occurs when∑L
l=1 ‖τm,k,l − τm′,k,l‖ ≈ 0. We define the pairwise informative score between φm and φm′ in

region uk as:

IF(φm, φm′ , uk) = 1
L

L∑
l=1
‖τm,k,l − τm′,k,l‖2

2 (9.2)

The total informative score for a region (denoted as IF(uk)) is the sum of the pairwise

informative scores for every pair of candidate ODEs. The informative score for region uk is:

IF(uk) = 1
M

M∑
m=1

M∑
m′=m+1

IF(φm, φm′ , uk) (9.3)

We select the region with the highest informative score, denoted u∗ ← arg maxK
k=1 IF(uk).

A batch of m initial conditions, {x1, . . . , xm}, is then sampled from region u∗, and the

data oracle O(xi, T) is queried with the given initial conditions. The obtained ground-

truth trajectories are used to compute the reward function for the objective, which in turn

updates the model’s parameters. In practice, the relative size of the regions and the number

of sampled regions are set as hyper-parameters in the experiments.

194

Policy Gradient-based Training. The REINFORCE objective that maximizes the ex-

pected reward is

J(θ) := Es∼pθ(s)[reward(s)]

where pθ(s) is the probability of sampling sequence s and θ represents the parameters of the

decoder. Following the REINFORCE policy gradient algorithm [239], the gradient w.r.t. the

objective ∇θJ(θ) is estimated by the empirical average over the samples from the probability

distribution pθ(s). We first sample N sequences (s1, . . . , sN), and an unbiased estimation of

the gradient of the objective is computed as:

∇θJ(θ) ≈ 1
N

N∑
i=1

(reward(si)− b)∇θ log pθ(si)

where the baseline b is the empirical mean reward of current sampled sequences. The baseline

is used to reduce the variance of the learning. The parameters of the decoder are updated

using the estimated policy gradient value. This update process increases the probability of

generating high goodness-of-fit ODEs. Detailed derivations are presented in Appendix G.2.

9.4 Related Work

AI-driven Scientific Discovery. Artificial intelligence has increasingly been employed to

accelerate discoveries in learning ordinary and partial differential equations directly from

data [214–219, 221–223, 278].

Symbolic Regression for ODEs. Symbolic regression, traditionally used to identify al-

gebraic equations between input variables and output labels, has been extended to discover

ODEs. A key ingredient is gradient matching, which approximates labels for symbolic re-

gression by using finite differences of consecutive states along a trajectory [240, 264, 265,

268]. Recent methods, such as SINDy and its extensions [214, 279], leverage sparse regres-

sion techniques to directly learn the structure of ODEs and PDEs from data. They perform

particularly well with trajectory data sampled at small, regular time intervals, where the

approximations closely align with true derivatives.

195

Neural Networks Learns Implicit ODEs. This research direction involves learning ODE

implicitly. Early work employed Gaussian Processes to model ODEs [280]. Neural ODEs

further advanced the field by parameterizing ODEs with neural networks, enabling training

through backpropagation via ODE solvers [223]. Physics-informed neural networks integrate

physical knowledge, such as conservation laws, into the modeling process [278]. Meanwhile,

Fourier neural operators use neural networks to learn the functional representation [281].

Active Learning aims to query informative unlabeled data to accelerate convergence with

fewer samples [282–285]. In symbolic regression, query-by-committee strategies have been

explored to actively query data for discovering algebraic equations [277, 286]. For example,

[273] proposed a method that learns uncertainty distributions using neural networks and

queries data with high uncertainty. However, all these methods largely overlooked the chaotic

behaviors inherent in dynamical systems.

9.5 Experiments

This section shows our Apps can find ODEs with the smallest errors (Normalized MSE)

among all competing approaches, under noiseless, noisy, and irregular time settings (see

Table 9.1 and Table 9.2). Compared to the baselines, our Apps data query strategy requires

fewer data and attains a better ranking of the TopK candidate ODEs (see Table 9.3).

9.5.1 Experimental Settings

Datasets. We consider 2 datasets of multivariate variables, including (1) Strogatz dataset [266]

of 80 instances, collected from the Strogatz textbook [271]. It is formalized as a benchmark

dataset by [266]. (2) ODEBase dataset [287] of 114 instances, containing equations from

chemistry and biology. Each dataset is further partitioned by the number of variables con-

tained in the ODE.

We consider 3 different conditions: (1) regular time noiseless condition, (2) regular time

noisy condition, and (3) irregular time condition. In the noiseless setting, the obtained data is

exactly the evaluation of the ground-truth expression. In the noisy setting, the obtained data

is further perturbed by Gaussian noise. We add multiplicative noise by replacing each x(ti)

196

Strogatz dataset ODEbase dataset
(σ2 = 0, α = 0) (σ2 = 0, α = 0)

n = 1 n = 2 n = 3 n = 4 n = 2 n = 3 n = 4 n = 5
SPL 0.787 0.892 1.921 2.865 0.867 2.17 4.75 13.16

E2ETransformer 6.47E−4 1.620 T.O. T.O. 0.757 T.O. T.O. T.O.
ProGED 0.129 0.666 2.68 3.856 0.317 2.134 T.O. T.O.

SINDy 1.90E−4 0.217 1.539 4.810 0.521 2.112 8.334 52.12
ODEFormer 0.0303 0.9261 1.033 1.010 0.213 0.245 1.213 3.148
Apps (ours) 2.06E−6 0.2912 1.011 0.521 0.1318 0.1306 1.046 3.054

Table 9.1. On the noiseless datasets with regular time sequence (σ2 = 0, α =
0), Median NMSE is reported over the best-predicted expression found by all
the algorithms. Our Apps method can discover the governing expressions with
smaller NMSE values than baselines, under the noiseless setting. T.O. means
termination with a 24-hour limit.

Noisy Strogatz datasets Irregular Strogatz dataset
(σ2 = 0.01, α = 0) (σ2 = 0, α = 0.1)

n = 1 n = 2 n = 3 n = 4 n = 1 n = 2 n = 3 n = 4
SPL 0.938 1.019 2.915 3.068 0.127 0.526 3.196 4.193

SINDy 6.4E−3 4.152 2.498 5.21 6.66E−4 0.472 0.827 4.163
ProGED 0.121 0.658 3.673 3.856 0.134 0.769 2.766 4.181

ODEFormer 0.139 0.621 2.392 0.812 0.031 1.036 1.51 1.011
Apps (ours) 7.75E-4 0.369 1.381 0.657 1.06E-6 0.215 1.012 0.947

Table 9.2. On the Strogatz dataset, the Median NMSE is reported over the
best-predicted expression found by all the algorithms under noisy or irregular
time sequence settings.

with (1+ε)x(ti), and ε is sampled from a zero mean multivariate Gaussian distribution with

diagonal variances diag(σ2, . . . , σ2). The noise rate is determined by σ2. For both noiseless

and noisy settings, the data points are sampled at regular time intervals. In the irregular

time setting, we first generate the regular time sequence and drop a fraction with probability

α. The rate of time irregularity is determined by α.

Baselines. We consider a line of recent works for symbolic equation discovery as our base-

lines. The methods using passive data query strategy are as follows: (1) SINDy [214], (2)

ODEFormer [266], (3) Symbolic Physics Learner (SPL) [240], (4) Probabilistic grammar for

equation discovery (ProGED) [265], (5) end-to-end Transformer (E2ETransformer) [208].

197

10 11 10 5 101

Normalizd MSE Metric

SPL

E2ETransformer

ProGED

SINDy

ODEFormer

APPS (ours)

Strogatz Dataset (n=1)

0.0 0.5 1.0
R-squared Score

Strogatz Dataset (n=1)

Figure 9.3. On the selected data (Strogatz dataset with n = 1), quartiles of
NMSE and R2 scores of the learning algorithms.

Evaluation. For evaluating all the methods, we considered 3 different metrics: (1) goodness-

of-fit using NMSE, (2) empirical running time of data querying step, and (3) ranking-based

distance. The goodness-of-fit using the NMSE indicates how well the learning algorithms

perform in discovering symbolic expressions. Given the best-predicted expression by each

algorithm, we evaluate the goodness-of-fit on a larger testing set with longer time steps and

a larger batch size of data. The median (50%) of the NMSE is reported in the benchmark

table. The full quantiles (25%, 50%, 75%) of the NMSE are further provided. The remaining

details of the experiment settings are in Appendix G.3.

9.5.2 Experimental Analysis

Goodness-of-fit Benchmark. We summarize our Apps on several challenging multivariate

datasets with noiseless data in Table 9.1. It shows our Apps attains the smallest median

NMSE values on all datasets, against a line of current popular baselines. The performance of

SPL and E2Etransformer drops greatly on irregular time sequences because the approximated

time derivative becomes inaccurate when missing the intermediate sequence. Our Apps

does not suffer from that because it outputs the predicted trajectory and does not need to

approximate the time derivative. Another reason is the decoder with massive parameters

can better adapt to actively collected datasets.

198

Noisy and Irregular Time Settings. We examine the performance of predicting trajec-

tories in the presence of noise and irregular time sequences in Table 9.2. The ground-truth

trajectory is subject to Gaussian noise with zero mean and σ2 = 0.05, and an irregularly

sampled sequence where 50% of evenly spaced points are uniformly dropped. The predicted

trajectory by each algorithm is compared against the ground truth, utilizing identical initial

conditions. Our Apps still attains a relatively smaller NMSE against baselines under the

two settings.

Quantiles of Evaluation Metrics. We further report the quantiles of the NMSE metric

in Figure 9.3 to assist the result in Table 9.1(a). Note that we cut off the negative values

as zero when demonstrating R2 score. The two box plots in Figure 9.3 show the proposed

Apps is consistently better than the baselines in terms of the full quantiles (25%, 50%, 75%)

of the NMSE metric.

Benchmark with other Active Strategies. Two baseline methods using active learning

strategy are: (1) query-by-committee (QbC) proposed in [277, 286]. (2) Core-Set [284] pro-

poses to sample diverse data. These methods were originally proposed with different neural

networks, thus we evaluate these different active learning methods using the same decoder

in our Apps. Current active learning methods are not directly available for evaluation in

our problem setting (in Equation 9.1), so we re-implement these query strategies with the

new problem setting.

The running time of the data querying step measures the efficiency of every active learn-

ing algorithm for this task. The ranking-based distance indicates if the ranking of many

candidate expressions is exactly the same as evaluated on full data. If the predicted ODEs

are ranked in the same order as the full data, then the ranking-based distance (Kendall tau

score) will be close to zero.

In Table 9.3, given a set of 20 predicted ODEs, we compare the TopK ranking (i.e., top

3) of predicted ODEs by each active learning strategy is the same as using full data. We

find both our phase portrait and QbC rank those predicted ODEs in proper ranking order.

Our Apps takes the least memory to locate the most informative region and is also time

efficient because we only pick one region among all the available regions. The QbC takes

much more time because it finds every initial condition as an optimization problem over the

199

Ranking-based distance (↓) Running Time (↓) Peak Memory (↓)

Apps (ours) 0.08 5.2 sec 3.76 MB
QbC 0.13 13.4 sec 51 MB

CoreSet 0.22 4.3 sec 2.74 GB

Table 9.3. Ranking comparison with different active learning strategies.
Apps shows a smaller ranking-based distance than other strategies, which
is better for ranking those best-predicted expressions. Also Apps takes less
memory consumption and less computational time because the sketching step
itself is lightweight.

input variables, which is solved by a separate gradient-based optimizer. CoreSet first runs

a clustering algorithm over the ground-truth data and then samples a diverse set of initial

conditions from each cluster. So the memory usage of Coreset is mainly determined by the

first clustering step.

9.6 Summary

In this chapter, we introduced Apps, a novel approach for discovering ODEs from tra-

jectory data. By actively reasoning about the most informative regions within the phase

portrait of candidate ODEs, Apps overcomes the limitations of passively learned methods

that rely on pre-collected datasets. Our approach also reduces the need for extensive data

collection while still yielding highly accurate and generalizable ODE models. The experi-

mental results demonstrate that Apps consistently outperforms baseline methods, achieving

the lowest median NMSE across various datasets under both noiseless and noisy conditions.

200

10. Future Work

10.1 Automatic Discovery of New Knowledge for Novel Materials

Designing new materials and understanding their behaviors is fundamental at the inter-

section of materials science and computer science1. My goal is to build an automatic theory

discovery system to answer critical questions from material scientists, such as predicting the

long-term stability of materials under extreme conditions. Building on my previous work

in discovering equations from experimental data, I aim to develop a framework that: (1)

automated material knowledge discovery, by automatically predicting systems of algebraic

or differential equations to explain material defects and the dynamic evolution of material

phases over time., and (2) Incorporates Scientific Hypotheses by collaborating with domain

experts to integrate diverse formats of scientific knowledge, effectively reducing the search

space and accelerating the discovery process.

10.2 Combining AR and ML to accelerate Automatic Theorem Proving

The AI4Math community has recently witnessed a great breakthrough: an integrated

system, combining the large language model and symbolic engine, won the silver award in the

IMO 2024. It opens a new field for artificial intelligence over mathematics, requiring neural

networks to understand concepts over the vast math literature and use symbolic engines to

critically evaluate the derivation steps. The developed tools can assist mathematicians in

proving those new challenging theorems from months to hours. Recent works primarily based

on large-language models are very sensitive to the symbols in the math problem description,

where the generated output is not mathematically sound. My research aims to: 1) Design

Powerful Symbolic Engines that ensure the mathematical soundness of generated outputs.

2) Enhance ML Models for Mathematical Understanding by enabling them to interpret

mathematical concepts and communicate solutions effectively in natural language. 3) Assist

Mathematicians by developing tools that can tackle challenging theorems more efficiently,

reducing problem-solving times from months to hours.
1↑Materials Genome Initiative (https://www.mgi.gov) by the federal government offers millions of funding
opportunities for discovering new materials.

201

https://www.mgi.gov

10.3 Providing Safety Guarantees on high-stake AI-driven system

While prior work demonstrated the effectiveness of integrating constraint reasoning into

auto-regressive models, the evolving trend is towards more general and large-scale models

like Large Language Models (LLMs), which offer greater flexibility across domains. However,

these models often fall short in high-stakes applications requiring strict adherence to physical

constraints. My research focuses on: 1) Integrating Constraint Reasoning into Large-Scale

Models to ensure feasible and safe outputs in critical applications such as autonomous driv-

ing. 2) Developing Adaptive AI Systems that can actively acquire and incorporate emerging,

unseen constraints, moving beyond the assumption of known constraints in current models.

3) Building an AI Ecosystem with Robustness Guarantees by creating models that can adapt

to new domains and safety requirements, enhancing their reliability in practical, real-world

scenarios.

202

REFERENCES
[1] N. Jiang, M. Zhang, W.-J. van Hoeve, and Y. Xue, “Constraint reasoning embedded

structured prediction,” J. Mach. Learn. Res., vol. 31, pp. 1–40, 2022.

[2] M. Zhang, N. Jiang, L. Li, and Y. Xue, “Constraint satisfaction driven natural lan-
guage generation: A tree search embedded MCMC approach,” in EMNLP (Findings),
Association for Computational Linguistics, 2020, pp. 1286–1298.

[3] F. Ding, N. Jiang, J. Ma, J. Peng, J. Xu, and Y. Xue, “PALM: probabilistic area loss
minimization for protein sequence alignment,” in UAI, ser. Proceedings of Machine
Learning Research, vol. 161, AUAI Press, 2021, pp. 1100–1109.

[4] A. Choi, Y. Xue, and A. Darwiche, “Same-decision probability: A confidence measure
for threshold-based decisions,” Int. J. Approx. Reason., vol. 53, no. 9, pp. 1415–1428,
2012.

[5] R. S. Michalski and J. R. Anderson, Machine learning - an artificial intelligence ap-
proach (Symbolic computation). Springer, 1984.

[6] C. M. Bishop, Pattern recognition and machine learning, 5th Edition (Information
science and statistics). Springer, 2007.

[7] R. Socher et al., “Recursive deep models for semantic compositionality over a sentiment
treebank,” in EMNLP, ACL, 2013, pp. 1631–1642.

[8] R. Xiang and J. Neville, “Collective inference for network data with copula latent
markov networks,” in WSDM, ACM, 2013, pp. 647–656.

[9] L. Tang, Y. Xue, D. Chen, and C. P. Gomes, “Multi-entity dependence learning with
rich context via conditional variational auto-encoder,” in AAAI, AAAI Press, 2018,
pp. 824–832.

[10] D. Chen, Y. Xue, and C. P. Gomes, “End-to-end learning for the deep multivariate pro-
bit model,” in Proceedings of the 35th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, vol. 80, PMLR, 2018, pp. 931–940.

[11] S. B. Akers, “Binary decision diagrams,” IEEE Trans. Computers, vol. 27, no. 6,
pp. 509–516, 1978.

[12] R. E. Bryant, “Graph-based algorithms for boolean function manipulation,” IEEE
Transactions on Computers, vol. C-35, pp. 677–691, 1986.

[13] R. Coletta, C. Bessiere, B. O’Sullivan, E. C. Freuder, S. O’Connell, and J. Quinqueton,
“Constraint acquisition as semi-automatic modeling,” in SGAI Conf, Springer, 2003,
pp. 111–124.

203

[14] A. Lallouet, M. Lopez, L. Martin, and C. Vrain, “On learning constraint problems,”
in ICTAI, IEEE Computer Society, 2010, pp. 45–52.

[15] N. Beldiceanu and H. Simonis, “A model seeker: Extracting global constraint models
from positive examples,” in CP, ser. Lecture Notes in Computer Science, vol. 7514,
Springer, 2012, pp. 141–157.

[16] C. Bessiere, F. Koriche, N. Lazaar, and B. O’Sullivan, “Constraint acquisition,” Arti-
ficial Intelligence, vol. 244, pp. 315–342, 2017.

[17] H. A. Addi, C. Bessiere, R. Ezzahir, and N. Lazaar, “Time-Bounded Query Gener-
ator for Constraint Acquisition,” in Proceedings of CPAIOR, ser. LNCS, vol. 10848,
Springer, 2018, pp. 1–17.

[18] V. Punyakanok, D. Roth, W. Yih, and D. Zimak, “Semantic role labeling via integer
linear programming inference,” in COLING, Association for Computational Linguis-
tics, 2004, pp. 1346–1353.

[19] D. Roth and W. Yih, “Integer linear programming inference for conditional random
fields,” in ICML, ser. ACM International Conference Proceeding Series, vol. 119, ACM,
2005, pp. 736–743.

[20] B. Amos and J. Z. Kolter, “Optnet: Differentiable optimization as a layer in neural
networks,” in ICML, ser. Proceedings of Machine Learning Research, vol. 70, PMLR,
2017, pp. 136–145.

[21] A. M. Ferber, B. Wilder, B. Dilkina, and M. Tambe, “Mipaal: Mixed integer program
as a layer,” in AAAI, AAAI Press, 2020, pp. 1504–1511.

[22] D. Deutsch, S. Upadhyay, and D. Roth, “A general-purpose algorithm for constrained
sequential inference,” in CoNLL, Association for Computational Linguistics, 2019,
pp. 482–492.

[23] B. Peters, V. Niculae, and A. F. T. Martins, “Sparse sequence-to-sequence models,” in
ACL, Association for Computational Linguistics, 2019, pp. 1504–1519.

[24] H. Wu, Z. Chen, W. Sun, B. Zheng, and W. Wang, “Modeling trajectories with recur-
rent neural networks,” in Proceedings of the Twenty-Sixth International Joint Confer-
ence on Artificial Intelligence, 2017, pp. 3083–3090.

[25] Z. Yang, J.-L. Wu, and H. Xiao, “Enforcing deterministic constraints on generative
adversarial networks for emulating physical systems,” arXiv preprint arXiv:1911.06671,
2019.

[26] E. Heim, “Constrained generative adversarial networks for interactive image genera-
tion,” in CVPR, Computer Vision Foundation / IEEE, 2019, pp. 10 753–10 761.

204

[27] A. Lallouet and A. Legtchenko, “Building consistencies for partially defined constraints
with decision trees and neural networks,” Int. J. Artif. Intell. Tools, vol. 16, no. 4,
pp. 683–706, 2007.

[28] M. Lombardi, M. Milano, and A. Bartolini, “Empirical decision model learning,” Artif.
Intell., vol. 244, pp. 343–367, 2017.

[29] M. Lombardi and S. Gualandi, “A lagrangian propagator for artificial neural networks
in constraint programming,” Constraints, vol. 21, no. 4, pp. 435–462, 2016.

[30] M. J. Kusner, B. Paige, and J. M. Hernández-Lobato, “Grammar variational autoen-
coder,” in ICML, ser. Proceedings of Machine Learning Research, vol. 70, PMLR, 2017,
pp. 1945–1954.

[31] H. Dai, Y. Tian, B. Dai, S. Skiena, and L. Song, “Syntax-directed variational autoen-
coder for structured data,” in ICLR (Poster), OpenReview.net, 2018.

[32] W. Jin, R. Barzilay, and T. S. Jaakkola, “Junction tree variational autoencoder for
molecular graph generation,” in ICML, ser. Proceedings of Machine Learning Research,
vol. 80, PMLR, 2018, pp. 2328–2337.

[33] A. Galassi, M. Lombardi, P. Mello, and M. Milano, “Model Agnostic Solution of CSPs
via Deep Learning: A Preliminary Study,” in Proceedings of CPAIOR, ser. LNCS,
vol. 10848, Springer, 2018, pp. 254–262.

[34] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in NIPS, 2015, pp. 2692–
2700.

[35] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural combinatorial op-
timization with reinforcement learning,” in 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Workshop Track Pro-
ceedings, 2017.

[36] D. Selsam, M. Lamm, B. Bünz, P. Liang, L. de Moura, and D. L. Dill, “Learning a
SAT solver from single-bit supervision,” in ICLR (Poster), OpenReview.net, 2019.

[37] A. Graves et al., “Hybrid computing using a neural network with dynamic external
memory,” Nature, vol. 538, no. 7626, pp. 471–476, 2016.

[38] E. B. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning combinatorial
optimization algorithms over graphs,” in NIPS, 2017, pp. 6348–6358.

[39] K. Guu, P. Pasupat, E. Z. Liu, and P. Liang, “From language to programs: Bridging
reinforcement learning and maximum marginal likelihood,” in ACL, Association for
Computational Linguistics, 2017, pp. 1051–1062.

205

[40] K. Shi, J. Steinhardt, and P. Liang, “Frangel: Component-based synthesis with control
structures,” Proc. ACM Program. Lang., vol. 3, no. POPL, 73:1–73:29, 2019.

[41] M. Deudon, P. Cournut, A. Lacoste, Y. Adulyasak, and L. Rousseau, “Learning heuris-
tics for the TSP by policy gradient,” in CPAIOR, ser. Lecture Notes in Computer
Science, vol. 10848, Springer, 2018, pp. 170–181.

[42] C. Liu, X. Chen, E. C. R. Shin, M. Chen, and D. X. Song, “Latent attention for if-then
program synthesis,” in NIPS, 2016, pp. 4574–4582.

[43] W. Hwang, J. Yim, S. Park, and M. Seo, “A comprehensive exploration on wikisql with
table-aware word contextualization,” NeurIPS Workshop on Knowledge Representation
& Reasoning Meets Machine Learning, 2019.

[44] J. Read, L. Martino, P. M. Olmos, and D. Luengo, “Scalable multi-output label predic-
tion: From classifier chains to classifier trellises,” Pattern Recognit., vol. 48, pp. 2096–
2109, 2015.

[45] K. Dembczynski, W. Cheng, and E. Hüllermeier, “Bayes optimal multilabel classifica-
tion via probabilistic classifier chains,” in ICML, Omnipress, 2010, pp. 279–286.

[46] J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional random fields: Prob-
abilistic models for segmenting and labeling sequence data,” in ICML, Morgan Kauf-
mann, 2001, pp. 282–289.

[47] S. Geman and D. Geman, “Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 6, no. 6, pp. 721–
741, 1984.

[48] D. Belanger and A. McCallum, “Structured prediction energy networks,” in ICML,
vol. 48, JMLR.org, 2016, pp. 983–992.

[49] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large margin methods
for structured and interdependent output variables,” J. Mach. Learn. Res., vol. 6,
pp. 1453–1484, 2005.

[50] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” CoRR, vol. abs/1411.1784,
2014.

[51] I. J. Goodfellow et al., “Generative adversarial nets,” in NIPS, 2014, pp. 2672–2680.

[52] D. J. Rezende and S. Mohamed, “Variational inference with normalizing flows,” in
ICML, ser. JMLR Workshop and Conference Proceedings, vol. 37, JMLR.org, 2015,
pp. 1530–1538.

206

[53] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” in NIPS, 2014, pp. 3104–3112.

[54] X. Pan and V. Srikumar, “Learning to speed up structured output prediction,” in
ICML, ser. Proceedings of Machine Learning Research, vol. 80, PMLR, 2018, pp. 3993–
4002.

[55] K. Bello, A. Ghoshal, and J. Honorio, “Minimax bounds for structured prediction
based on factor graphs,” in AISTATS, ser. Proceedings of Machine Learning Research,
vol. 108, PMLR, 2020, pp. 213–222.

[56] V. Niculae, A. F. T. Martins, M. Blondel, and C. Cardie, “Sparsemap: Differentiable
sparse structured inference,” in ICML, ser. Proceedings of Machine Learning Research,
vol. 80, PMLR, 2018, pp. 3796–3805.

[57] I. Wegener, Branching Programs and Binary Decision Diagrams. Society for Industrial
and Applied Mathematics, 2000. doi: 10.1137/1.9780898719789.

[58] D. Bergman, A. A. Ciré, W. van Hoeve, and J. N. Hooker, “Discrete optimization with
decision diagrams,” INFORMS J. Comput., vol. 28, no. 1, pp. 47–66, 2016.

[59] W. van Hoeve, “Graph coloring with decision diagrams,” Math. Program., vol. 192,
no. 1, pp. 631–674, 2022.

[60] A. A. Ciré and W. J. van Hoeve, “Multivalued decision diagrams for sequencing prob-
lems,” Oper. Res., vol. 61, no. 6, pp. 1411–1428, 2013.

[61] H. R. Andersen, T. Hadzic, J. N. Hooker, and P. Tiedemann, “A Constraint Store
Based on Multivalued Decision Diagrams,” in Proceedings of CP, ser. LNCS, vol. 4741,
Springer, 2007, pp. 118–132.

[62] S. J. Friedman and K. J. Supowit, “Finding the optimal variable ordering for binary
decision diagrams,” IEEE Trans. Computers, vol. 39, no. 5, pp. 710–713, 1990. doi:
10.1109/12.53586.

[63] D. Bergman, A. A. Ciré, W. van Hoeve, and J. N. Hooker, Decision Diagrams for
Optimization (Artificial Intelligence: Foundations, Theory, and Algorithms). Springer,
2016.

[64] V. Niculae and A. F. T. Martins, “Lp-sparsemap: Differentiable relaxed optimization
for sparse structured prediction,” in ICML, ser. Proceedings of Machine Learning Re-
search, vol. 119, PMLR, 2020, pp. 7348–7359.

[65] J. J. M. Bront, I. Mendez-Diaz, and P. Zabala, “An integer programming approach for
the time-dependent TSP,” Electron. Notes Discret. Math., vol. 36, pp. 351–358, 2010.

207

https://doi.org/10.1137/1.9780898719789
https://doi.org/10.1109/12.53586

[66] U. Junior Mele, L. Maria Gambardella, and R. Montemanni, “Machine learning ap-
proaches for the traveling salesman problem: A survey,” in 2021 The 8th International
Conference on Industrial Engineering and Applications (Europe), 2021, pp. 182–186.

[67] K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmidhuber, “LSTM:
A search space odyssey,” IEEE Trans. Neural Networks Learn. Syst., vol. 28, no. 10,
pp. 2222–2232, 2017.

[68] P. Shaw, J. Uszkoreit, and A. Vaswani, “Self-attention with relative position represen-
tations,” in NAACL-HLT, Association for Computational Linguistics, 2018, pp. 464–
468.

[69] L. Dong and M. Lapata, “Coarse-to-fine decoding for neural semantic parsing,” in
ACL, Association for Computational Linguistics, 2018, pp. 731–742.

[70] V. Zhong, C. Xiong, and R. Socher, “Seq2sql: Generating structured queries from
natural language using reinforcement learning,” CoRR, vol. abs/1709.00103, 2017.

[71] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidi-
rectional transformers for language understanding,” in NAACL-HLT, Association for
Computational Linguistics, 2019, pp. 4171–4186.

[72] G. E. Hinton, “Training products of experts by minimizing contrastive divergence,”
Neural Comput., vol. 14, no. 8, pp. 1771–1800, 2002.

[73] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large margin methods
for structured and interdependent output variables,” J. Mach. Learn. Res., vol. 6,
pp. 1453–1484, Dec. 2005.

[74] I. J. Goodfellow et al., “Generative adversarial nets,” in NIPS, 2014, pp. 2672–2680.

[75] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in ICLR, 2014.

[76] M. Germain, K. Gregor, I. Murray, and H. Larochelle, “MADE: masked autoencoder for
distribution estimation,” in ICML, ser. JMLR Workshop and Conference Proceedings,
vol. 37, JMLR.org, 2015, pp. 881–889.

[77] H. Larochelle and I. Murray, “The neural autoregressive distribution estimator,” in
AISTATS, ser. JMLR Proceedings, vol. 15, JMLR.org, 2011, pp. 29–37.

[78] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recurrent neural net-
works,” in ICML, ser. JMLR Workshop and Conference Proceedings, vol. 48, JMLR.org,
2016, pp. 1747–1756.

208

[79] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial net-
works,” in ICML, ser. Proceedings of Machine Learning Research, vol. 70, PMLR,
2017, pp. 214–223.

[80] Y. Song and S. Ermon, “Generative modeling by estimating gradients of the data
distribution,” in NeurIPS, 2019, pp. 11 895–11 907.

[81] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-
based generative modeling through stochastic differential equations,” in ICLR, Open-
Review.net, 2021.

[82] K. P. Murphy, Y. Weiss, and M. I. Jordan, “Loopy belief propagation for approximate
inference: An empirical study,” in UAI, Morgan Kaufmann, 1999, pp. 467–475.

[83] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Generalized belief propagation,” in NIPS,
MIT Press, 2000, pp. 689–695.

[84] M. J. Wainwright and M. I. Jordan, “Log-determinant relaxation for approximate
inference in discrete markov random fields,” IEEE Trans. Signal Process., vol. 54,
no. 6-1, pp. 2099–2109, 2006.

[85] A. Braunstein, M. Mézard, and R. Zecchina, “Survey propagation: An algorithm for
satisfiability,” Random Struct. Algorithms, vol. 27, pp. 201–226, 2005.

[86] M. Chavira, A. Darwiche, and M. Jaeger, “Compiling relational bayesian networks for
exact inference,” Int. J. Approx. Reason., vol. 42, no. 1-2, pp. 4–20, 2006.

[87] P. Van Hentenryck, Constraint Satisfaction in Logic Programming. Cambridge, MA,
USA: MIT Press, 1989, isbn: 0-262-08181-4.

[88] V. Gogate and R. Dechter, “Importance sampling-based estimation over and/or search
spaces for graphical models,” Artificial Intelligence, vol. 184-185, pp. 38–77, 2012.

[89] T. Sang, P. Bearne, and H. Kautz, “Performing bayesian inference by weighted model
counting,” in AAAI, ser. AAAI’05, 2005, pp. 475–481.

[90] Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov, and E. P. Xing, “Toward controlled
generation of text,” in ICML, ser. Proceedings of Machine Learning Research, vol. 70,
PMLR, 2017, pp. 1587–1596.

[91] D. Lowd and P. M. Domingos, “Learning arithmetic circuits,” in UAI, AUAI Press,
2008, pp. 383–392.

[92] F. Ding, J. Ma, J. Xu, and Y. Xue, “XOR-CD: linearly convergent constrained structure
generation,” in ICML, ser. Proceedings of Machine Learning Research, vol. 139, PMLR,
2021, pp. 2728–2738.

209

[93] P. Erdős and L. Lovász, “Problems and results on 3-chromatic hypergraphs and some
related questions,” in Colloquia Mathematica Societatis Janos Bolyai 10. Infinite and
Finite Sets, Keszthely (Hungary), Citeseer, 1973.

[94] R. A. Moser and G. Tardos, “A constructive proof of the general lovász local lemma,”
J. ACM, vol. 57, no. 2, 11:1–11:15, 2010.

[95] H. Guo, M. Jerrum, and J. Liu, “Uniform sampling through the lovász local lemma,”
J. ACM, vol. 66, no. 3, 18:1–18:31, 2019.

[96] D. Selsam, M. Lamm, B. Bünz, P. Liang, L. de Moura, and D. L. Dill, “Learning a
SAT solver from single-bit supervision,” in ICLR (Poster), OpenReview.net, 2019.

[97] H. Duan, P. Vaezipoor, M. B. Paulus, Y. Ruan, and C. J. Maddison, “Augment with
care: Contrastive learning for combinatorial problems,” in ICML, ser. Proceedings of
Machine Learning Research, vol. 162, PMLR, 2022, pp. 5627–5642.

[98] Z. Li, Q. Chen, and V. Koltun, “Combinatorial optimization with graph convolutional
networks and guided tree search,” in NeurIPS, 2018, pp. 537–546.

[99] E. Yolcu and B. Póczos, “Learning local search heuristics for boolean satisfiability,” in
NeurIPS, 2019, pp. 7990–8001.

[100] X. Chen and Y. Tian, “Learning to perform local rewriting for combinatorial opti-
mization,” in NeurIPS, 2019, pp. 6278–6289.

[101] N. Karalias and A. Loukas, “Erdos goes neural: An unsupervised learning framework
for combinatorial optimization on graphs,” in NeurIPS, 2020, pp. 6659–6672.

[102] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinatorial optimiza-
tion: A methodological tour d’horizon,” Eur. J. Oper. Res., vol. 290, no. 2, pp. 405–
421, 2021.

[103] J. Mandi, E. Demirovic, P. J. Stuckey, and T. Guns, “Smart predict-and-optimize for
hard combinatorial optimization problems,” in AAAI, AAAI Press, 2020, pp. 1603–
1610.

[104] R. M. Neal, Probabilistic inference using Markov chain Monte Carlo methods. De-
partment of Computer Science, University of Toronto Toronto, ON, Canada, 1993.

[105] P. Dagum and R. M. Chavez, “Approximating probabilistic inference in bayesian
belief networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 15, no. 3, pp. 246–255,
1993.

[106] H. Ge, K. Xu, and Z. Ghahramani, “Turing: A language for flexible probabilistic
inference,” in AISTATS, vol. 84, PMLR, Apr. 2018, pp. 1682–1690.

210

[107] A. T. Ihler, J. W. Fisher III, and A. S. Willsky, “Loopy belief propagation: Con-
vergence and effects of message errors,” J. Mach. Learn. Res., vol. 6, pp. 905–936,
2005.

[108] A. Coja-Oghlan, N. Müller, and J. B. Ravelomanana, Belief propagation on the ran-
dom k-sat model, 2020. arXiv: 2011.02303.

[109] F. Ding and Y. Xue, “Contrastive divergence learning with chained belief propaga-
tion,” in PGM, ser. Proceedings of Machine Learning Research, vol. 138, PMLR, 2020,
pp. 161–172.

[110] V. Gogate and R. Dechter, “Samplesearch: Importance sampling in presence of de-
terminism,” Artif. Intell., vol. 175, no. 2, pp. 694–729, 2011.

[111] C. P. Gomes, A. Sabharwal, and B. Selman, “Near-uniform sampling of combinatorial
spaces using XOR constraints,” in NIPS, MIT Press, 2006, pp. 481–488.

[112] S. Ermon, C. P. Gomes, A. Sabharwal, and B. Selman, “Taming the curse of dimen-
sionality: Discrete integration by hashing and optimization,” in ICML (2), ser. JMLR
Workshop and Conference Proceedings, vol. 28, JMLR.org, 2013, pp. 334–342.

[113] D. Achlioptas and P. Theodoropoulos, “Probabilistic model counting with short xors,”
in SAT, ser. Lecture Notes in Computer Science, vol. 10491, Springer, 2017, pp. 3–19.

[114] S. Chakraborty, K. S. Meel, and M. Y. Vardi, “A scalable approximate model counter,”
CoRR, vol. abs/1306.5726, 2013.

[115] Y. Mansour, “Learning boolean functions via the fourier transform,” in Theoretical
advances in neural computation and learning, Springer, 1994, pp. 391–424.

[116] C. Dodaro and A. Previti, “Minipref: A tool for preferences in SAT (short paper),”
in RCRA + RiCeRcA, ser. CEUR Workshop Proceedings, vol. 2538, CEUR-WS.org,
2019.

[117] M. Lauria, J. Elffers, J. Nordström, and M. Vinyals, “Cnfgen: A generator of crafted
benchmarks,” in SAT, vol. 10491, Springer, 2017, pp. 464–473.

[118] C. K. Carter and R. Kohn, “On gibbs sampling for state space models,” Biometrika,
vol. 81, no. 3, pp. 541–553, 1994.

[119] R. Gupta, S. Sharma, S. Roy, and K. S. Meel, “WAPS: weighted and projected sam-
pling,” in TACAS, vol. 11427, 2019, pp. 59–76.

[120] S. Chakraborty, D. J. Fremont, K. S. Meel, S. A. Seshia, and M. Y. Vardi, “Distribution-
aware sampling and weighted model counting for SAT,” in AAAI, AAAI Press, 2014,
pp. 1722–1730.

211

https://arxiv.org/abs/2011.02303

[121] S. Ermon, C. P. Gomes, A. Sabharwal, and B. Selman, “Embed and project: Discrete
sampling with universal hashing,” in NIPS, 2013, pp. 2085–2093.

[122] F. Ding and Y. Xue, “XOR-SGD: provable convex stochastic optimization for decision-
making under uncertainty,” in UAI, ser. Proceedings of Machine Learning Research,
vol. 161, AUAI Press, 2021, pp. 151–160.

[123] P. Golia, M. Soos, S. Chakraborty, and K. S. Meel, “Designing samplers is easy: The
boon of testers,” in FMCAD, IEEE, 2021, pp. 222–230.

[124] R. Dutra, K. Laeufer, J. Bachrach, and K. Sen, “Efficient sampling of SAT solutions
for testing,” in ICSE, ACM, 2018, pp. 549–559.

[125] M. Soos, S. Gocht, and K. S. Meel, “Tinted, detached, and lazy CNF-XOR solving
and its applications to counting and sampling,” in CAV (1), ser. Lecture Notes in
Computer Science, vol. 12224, Springer, 2020, pp. 463–484.

[126] S. Sharma, R. Gupta, S. Roy, and K. S. Meel, “Knowledge compilation meets uniform
sampling,” in LPAR, ser. EPiC Series in Computing, vol. 57, 2018, pp. 620–636.

[127] M. Mahmoud, “Gpu enabled automated reasoning,” Ph.D. dissertation, Mathematics
and Computer Science, Mar. 2022.

[128] J. K. Fichte, M. Hecher, and M. Zisser, “An improved gpu-based SAT model counter,”
in CP, 2019, pp. 491–509.

[129] S. Chakraborty and K. S. Meel, “On testing of uniform samplers,” in AAAI, 2019,
pp. 7777–7784.

[130] H. Cohn, R. Pemantle, and J. G. Propp, “Generating a random sink-free orientation
in quadratic time,” Electron. J. Comb., vol. 9, no. 1, 2002.

[131] J. Takahashi, T. Yamaguchi, K. Sekiyama, and T. Fukuda, “Communication timing
control and topology reconfiguration of a sink-free meshed sensor network with mobile
robots,” IEEE/ASME transactions on mechatronics, vol. 14, no. 2, pp. 187–197, 2009.

[132] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidi-
rectional transformers for language understanding,” in NAACL-HLT, Association for
Computational Linguistics, 2019, pp. 4171–4186.

[133] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language
models are unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019.

[134] V. Gogate and R. Dechter, “Approximate counting by sampling the backtrack-free
search space,” in AAAI, 2007, pp. 198–203.

212

[135] V. Gogate and R. Dechter, “Samplesearch: A scheme that searches for consistent
samples,” in AISTATS, 2007, pp. 147–154.

[136] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” in NIPS, 2014, pp. 3104–3112.

[137] M. Berglund, T. Raiko, M. Honkala, L. Kärkkäinen, A. Vetek, and J. Karhunen,
“Bidirectional recurrent neural networks as generative models,” in Advances in Neural
Information Processing Systems, 2015, pp. 856–864.

[138] Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov, and E. P. Xing, “Toward controlled
generation of text,” in ICML, 2017, pp. 1587–1596.

[139] H. Zhang, H. Zhou, N. Miao, and L. Li, “Generating fluent adversarial examples
for natural languages,” in ACL (1), Association for Computational Linguistics, 2019,
pp. 5564–5569.

[140] N. Miao, Y. Song, H. Zhou, and L. Li, “Do you have the right scissors? tailoring
pre-trained language models via monte-carlo methods,” in ACL, Association for Com-
putational Linguistics, 2020, pp. 3436–3441.

[141] J. Y. Lee, S. V. Mehta, M. Wick, J. Tristan, and J. G. Carbonell, “Gradient-based
inference for networks with output constraints,” in AAAI, 2019, pp. 4147–4154.

[142] J. Su, J. Xu, X. Qiu, and X. Huang, “Incorporating discriminator in sentence gener-
ation: A gibbs sampling method,” in AAAI, 2018, pp. 5496–5503.

[143] M. Richardson and P. M. Domingos, “Markov logic networks,” Mach. Learn., vol. 62,
no. 1-2, pp. 107–136, 2006.

[144] T. Khot, N. Balasubramanian, E. Gribkoff, A. Sabharwal, P. Clark, and O. Etzioni,
“Exploring markov logic networks for question answering,” in EMNLP, 2015, pp. 685–
694.

[145] S. Prabhumoye, Y. Tsvetkov, R. Salakhutdinov, and A. W. Black, “Style transfer
through back-translation,” in ACL (1), Association for Computational Linguistics,
2018, pp. 866–876.

[146] M. S. Amato and M. C. MacDonald, “Sentence processing in an artificial language:
Learning and using combinatorial constraints,” Cognition, vol. 116, no. 1, pp. 143–148,
2010.

[147] M. Sundermeyer, R. Schlüter, and H. Ney, “LSTM neural networks for language
modeling,” in INTERSPEECH, ISCA, 2012, pp. 194–197.

213

[148] N. Miao, H. Zhou, L. Mou, R. Yan, and L. Li, “CGMH: constrained sentence gener-
ation by metropolis-hastings sampling,” in AAAI, 2019, pp. 6834–6842.

[149] P. S. H. Lewis, L. Denoyer, and S. Riedel, “Unsupervised question answering by cloze
translation,” in ACL (1), Association for Computational Linguistics, 2019, pp. 4896–
4910.

[150] P. Rajpurkar, R. Jia, and P. Liang, “Know what you don’t know: Unanswerable
questions for squad,” in ACL, 2018, pp. 784–789.

[151] Y. Fu, H. Zhou, J. Chen, and L. Li, “Rethinking text attribute transfer: A lexical
analysis,” in INLG, Association for Computational Linguistics, 2019, pp. 24–33.

[152] C. B. Do, S. S. Gross, and S. Batzoglou, “Contralign: Discriminative training for pro-
tein sequence alignment,” in Research in Computational Molecular Biology, vol. 3909,
Springer, 2006, pp. 160–174.

[153] D. S. Marks et al., “Protein 3d structure computed from evolutionary sequence vari-
ation,” PLOS ONE, vol. 6, no. 12, pp. 1–20, Dec. 2011.

[154] J. Söding, A. Biegert, and A. N. Lupas, “The hhpred interactive server for pro-
tein homology detection and structure prediction,” Nucleic acids research, vol. 33,
no. suppl_2, W244–W248, 2005.

[155] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local
alignment search tool,” Journal of molecular biology, vol. 215, no. 3, pp. 403–410,
1990.

[156] S. Kumar, K. Tamura, and M. Nei, “Mega3: Integrated software for molecular evolu-
tionary genetics analysis and sequence alignment,” Briefings in bioinformatics, vol. 5,
no. 2, pp. 150–163, 2004.

[157] K. Hou, H. Wang, and W.-c. Feng, “Aalign: A simd framework for pairwise sequence
alignment on x86-based multi-and many-core processors,” in 2016 IEEE International
Parallel and Distributed Processing Symposium, IEEE, 2016, pp. 780–789.

[158] F. Armougom et al., “Expresso: Automatic incorporation of structural information in
multiple sequence alignments using 3d-coffee,” Nucleic Acids Res., vol. 34, no. Web-
Server-Issue, pp. 604–608, 2006.

[159] K. Katoh and H. Toh, “Recent developments in the MAFFT multiple sequence align-
ment program,” Briefings in bioinformatics, vol. 9, no. 4, pp. 286–298, 2008.

[160] G. E. Hinton, “Training products of experts by minimizing contrastive divergence,”
Neural computation, vol. 14, no. 8, pp. 1771–1800, 2002.

214

[161] M. Tompa, “Lecture notes on biological sequence analysis,” University of Washington,
Seattle, Technical report, 2000.

[162] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biological sequence analysis:
probabilistic models of proteins and nucleic acids. Cambridge university press, 1998.

[163] S. B. Needleman and C. D. Wunsch, “A general method applicable to the search for
similarities in the amino acid sequence of two proteins,” Journal of Molecular Biology,
vol. 48, no. 3, pp. 443–453, 1970, issn: 0022-2836.

[164] T. Smith and M. Waterman, “Identification of common molecular subsequences,”
Journal of Molecular Biology, vol. 147, no. 1, pp. 195–197, 1981, issn: 0022-2836.

[165] J. Ma, S. Wang, Z. Wang, and J. Xu, “Mrfalign: Protein homology detection through
alignment of markov random fields,” PLoS computational biology, vol. 10, no. 3, 2014.

[166] C.-S. Jeong and D. Kim, “Structure-based markov random field model for representing
evolutionary constraints on functional sites,” BMC bioinformatics, vol. 17, no. 1, pp. 1–
11, 2016.

[167] N. M. Daniels, A. Gallant, N. Ramsey, and L. J. Cowen, “Mrfy: Remote homology de-
tection for beta-structural proteins using markov random fields and stochastic search,”
IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 12, no. 1,
pp. 4–16, 2015.

[168] S. Balakrishnan, H. Kamisetty, J. G. Carbonell, S.-I. Lee, and C. J. Langmead,
“Learning generative models for protein fold families,” Proteins: Structure, Function,
and Bioinformatics, vol. 79, no. 4, pp. 1061–1078, 2011.

[169] J. Söding, “Protein homology detection by hmm–hmm comparison,” Bioinformatics,
vol. 21, no. 7, pp. 951–960, 2005.

[170] R. Lajugie, D. Garreau, F. R. Bach, and S. Arlot, “Metric learning for temporal
sequence alignment,” in Advances in Neural Information Processing Systems, vol. 27,
2014, pp. 1817–1825.

[171] C. Gupta, E. Yilmaz, and H. Li, “Acoustic modeling for automatic lyrics-to-audio
alignment,” in 20th Annual Conference of the International Speech Communication
Association, ISCA, 2019, pp. 2040–2044.

[172] F. Wu and J. Xu, “Deep template-based protein structure prediction,” PLOS Com-
putational Biology, vol. 17, no. 5, pp. 1–18, 2021.

[173] S. F. Altschul and D. J. Lipman, “Protein database searches for multiple alignments.,”
Proceedings of the National Academy of Sciences, vol. 87, no. 14, pp. 5509–5513, 1990.

215

[174] S. Wang, J. Ma, J. Peng, and J. Xu, “Protein structure alignment beyond spatial
proximity,” Scientific reports, vol. 3, p. 1448, 2013.

[175] J. Ma, J. Peng, S. Wang, and J. Xu, “A conditional neural fields model for protein
threading,” Bioinformatics, vol. 28, no. 12, pp. 59–66, 2012.

[176] A. Paszke et al., “Automatic differentiation in pytorch,” in NIPS 2017 Workshop
Autodiff, 2017.

[177] M. Schmidt and H. Lipson, “Distilling free-form natural laws from experimental data,”
Science, vol. 324, no. 5923, pp. 81–85, 2009.

[178] M. Virgolin, T. Alderliesten, and P. A. N. Bosman, “Linear scaling with and within se-
mantic backpropagation-based genetic programming for symbolic regression,” in GECCO,
ACM, 2019, pp. 1084–1092.

[179] R. Guimerà et al., “A bayesian machine scientist to aid in the solution of challenging
scientific problems,” Science advances, vol. 6, no. 5, eaav6971, 2020.

[180] B. K. Petersen, M. Landajuela, T. N. Mundhenk, C. P. Santiago, S. Kim, and J. T.
Kim, “Deep symbolic regression: Recovering mathematical expressions from data via
risk-seeking policy gradients,” in ICLR, OpenReview.net, 2021.

[181] T. N. Mundhenk, M. Landajuela, R. Glatt, C. P. Santiago, D. M. Faissol, and B. K.
Petersen, “Symbolic regression via deep reinforcement learning enhanced genetic pro-
gramming seeding,” in NeurIPS, 2021, pp. 24 912–24 923.

[182] L. Scavuzzo et al., “Learning to branch with tree mdps,” in NeurIPS, 2022.

[183] S. Razavi and E. R. Gamazon, “Neural-network-directed genetic programmer for dis-
covery of governing equations,” CoRR, vol. abs/2203.08808, 2022.

[184] B. He, Q. Lu, Q. Yang, J. Luo, and Z. Wang, “Taylor genetic programming for
symbolic regression,” in GECCO, ACM, 2022, pp. 946–954.

[185] J. S. Lehman, T. J. Santner, and W. I. Notz, “Designing computer experiments to
determine robust control variables,” Statistica Sinica, pp. 571–590, 2004.

[186] T. J. Santner, B. J. Williams, and W. I. Notz, The Design and Analysis of Computer
Experiments (Springer series in statistics). Springer, 2003.

[187] P. Langley, “Machine learning as an experimental science,” Mach. Learn., vol. 3,
pp. 5–8, 1988.

[188] D. F. Kibler and P. Langley, “The experimental study of machine learning,” 1991.

216

[189] P. Langley, “BACON: A production system that discovers empirical laws,” in IJCAI,
William Kaufmann, 1977, p. 344.

[190] P. Langley, “Rediscovering physics with BACON.3,” in IJCAI, William Kaufmann,
1979, pp. 505–507.

[191] P. Langley, G. L. Bradshaw, and H. A. Simon, “BACON.5: the discovery of conser-
vation laws,” in IJCAI, William Kaufmann, 1981, pp. 121–126.

[192] R. D. King et al., “Functional genomic hypothesis generation and experimentation
by a robot scientist,” Nature, vol. 427, no. 6971, pp. 247–252, 2004.

[193] R. D. King et al., “The automation of science,” Science, vol. 324, no. 5923, pp. 85–89,
2009.

[194] M. Cerrato, J. Brugger, N. Schmitt, and S. Kramer, “Reinforcement learning for auto-
mated scientific discovery,” in AAAI Spring Symposium on Computational Approaches
to Scientific Discovery, 2023.

[195] M. Virgolin and S. P. Pissis, “Symbolic regression is NP-hard,” Transactions on Ma-
chine Learning Research, 2022.

[196] Y. Matsubara, N. Chiba, R. Igarashi, T. Taniai, and Y. Ushiku, “Rethinking symbolic
regression datasets and benchmarks for scientific discovery,” arXiv preprint arXiv:2206.10540,
2022.

[197] T. P. Ryan and J. P. Morgan, “Modern experimental design,” Journal of Statistical
Theory and Practice, vol. 1, no. 3-4, pp. 501–506, 2007.

[198] Q. Chen, B. Xue, and M. Zhang, “Rademacher complexity for enhancing the general-
ization of genetic programming for symbolic regression,” IEEE Trans. Cybern., vol. 52,
no. 4, pp. 2382–2395, 2022.

[199] P. Langley, “Data-driven discovery of physical laws,” Cognitive Science, vol. 5, no. 1,
pp. 31–54, 1981.

[200] D. B. Lenat, “The ubiquity of discovery,” Artificial Intelligence, vol. 9, no. 3, pp. 257–
285, 1977, issn: 0004-3702.

[201] S.-M. Udrescu and M. Tegmark, “Ai feynman: A physics-inspired method for symbolic
regression,” Science Advances, vol. 6, no. 16, 2020.

[202] D. Chen, Y. Wang, and W. Gao, “Combining a gradient-based method and an evolu-
tion strategy for multi-objective reinforcement learning,” Appl. Intell., vol. 50, no. 10,
pp. 3301–3317, 2020.

217

[203] T. McConaghy, “Ffx: Fast, scalable, deterministic symbolic regression technology,” in
Genetic Programming Theory and Practice IX, Springer, 2011, pp. 235–260.

[204] C. Chen, C. Luo, and Z. Jiang, “Elite bases regression: A real-time algorithm for
symbolic regression,” in ICNC-FSKD, IEEE, 2017, pp. 529–535.

[205] N. Q. Uy, N. X. Hoai, M. O’Neill, R. I. McKay, and E. G. López, “Semantically-based
crossover in genetic programming: Application to real-valued symbolic regression,”
Genet. Program. Evolvable Mach., vol. 12, no. 2, pp. 91–119, 2011.

[206] M. Balcan, T. Dick, T. Sandholm, and E. Vitercik, “Learning to branch,” in ICML,
ser. Proceedings of Machine Learning Research, vol. 80, PMLR, 2018, pp. 353–362.

[207] L. Biggio, T. Bendinelli, A. Neitz, A. Lucchi, and G. Parascandolo, “Neural sym-
bolic regression that scales,” in ICML, ser. Proceedings of Machine Learning Research,
vol. 139, PMLR, 2021, pp. 936–945.

[208] P. Kamienny, S. d’Ascoli, G. Lample, and F. Charton, “End-to-end symbolic regres-
sion with transformers,” in NeurIPS, 2022.

[209] P. W. Langley, H. A. Simon, G. Bradshaw, and J. M. Zytkow, Scientific Discovery:
Computational Explorations of the Creative Process. The MIT Press, Feb. 1987, isbn:
9780262316002.

[210] H. Wang et al., “Enabling scientific discovery with artificial intelligence,” Nature,
2022.

[211] E. Bradley, M. Easley, and R. Stolle, “Reasoning about nonlinear system identifica-
tion,” Artificial Intelligence, vol. 133, no. 1, pp. 139–188, 2001.

[212] W. Bridewell, P. Langley, L. Todorovski, and S. Džeroski, “Inductive process model-
ing,” Machine Learning, vol. 71, pp. 1–32, 2008.

[213] S. Dzeroski and L. Todorovski, “Discovering dynamics: From inductive logic program-
ming to machine discovery,” J. Intell. Inf. Syst., vol. 4, no. 1, pp. 89–108, 1995.

[214] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations from
data by sparse identification of nonlinear dynamical systems,” Proceedings of the Na-
tional Academy of Sciences, vol. 113, no. 15, pp. 3932–3937, 2016.

[215] T. Wu and M. Tegmark, “Toward an artificial intelligence physicist for unsupervised
learning,” Phys. Rev. E, vol. 100, p. 033 311, 3 Sep. 2019.

[216] S. Zhang and G. Lin, “Robust data-driven discovery of governing physical laws with
error bars,” Proceedings of the Royal Society A: Mathematical, Physical and Engineer-
ing Sciences, vol. 474, no. 2217, p. 20 180 305, 2018.

218

[217] R. Iten, T. Metger, H. Wilming, L. Del Rio, and R. Renner, “Discovering physical
concepts with neural networks,” Physical review letters, vol. 124, no. 1, p. 010 508,
2020.

[218] M. D. Cranmer et al., “Discovering symbolic models from deep learning with inductive
biases,” in NeurIPS, 2020.

[219] M. Raissi, A. Yazdani, and G. E. Karniadakis, “Hidden fluid mechanics: Learning
velocity and pressure fields from flow visualizations,” Science, vol. 367, no. 6481,
pp. 1026–1030, 2020.

[220] M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations,” Journal of Computational Physics, vol. 378, pp. 686–
707, 2019.

[221] Z. Liu and M. Tegmark, “Machine learning conservation laws from trajectories,” Phys.
Rev. Lett., vol. 126, p. 180 604, 18 May 2021.

[222] Y. Xue, M. Nasim, M. Zhang, C. Fan, X. Zhang, and A. El-Azab, “Physics knowledge
discovery via neural differential equation embedding,” in ECML/PKDD (5), ser. Lec-
ture Notes in Computer Science, vol. 12979, Springer, 2021, pp. 118–134.

[223] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary
differential equations,” Advances in neural information processing systems, vol. 31,
2018.

[224] R. Valdés-Pérez, “Human/computer interactive elucidation of reaction mechanisms:
Application to catalyzed hydrogenolysis of ethane,” Catalysis Letters, vol. 28, pp. 79–
87, 1994.

[225] S. Hanneke, “Theory of disagreement-based active learning,” Found. Trends Mach.
Learn., vol. 7, no. 2-3, pp. 131–309, 2014.

[226] D. Golovin, A. Krause, and D. Ray, “Near-optimal bayesian active learning with noisy
observations,” Advances in Neural Information Processing Systems, vol. 23, 2010.

[227] D. Kahneman, Thinking, fast and slow. Macmillan, 2011.

[228] T. Anthony, Z. Tian, and D. Barber, “Thinking fast and slow with deep learning and
tree search,” in NIPS, 2017, pp. 5360–5370.

[229] G. Booch et al., “Thinking fast and slow in AI,” in AAAI, AAAI Press, 2021,
pp. 15 042–15 046.

219

[230] H. A. Simon, “Spurious correlation: A causal interpretation,” Journal of the American
statistical Association, vol. 49, no. 267, pp. 467–479, 1954.

[231] P. Langley, “Scientific discovery, causal explanation, and process model induction,”
Mind & Society, vol. 18, no. 1, pp. 43–56, 2019.

[232] C. Glymour, R. Scheines, and P. Spirtes, Discovering causal structure: Artificial in-
telligence, philosophy of science, and statistical modeling. Academic Press, 2014.

[233] A. Jaber, A. Ribeiro, J. Zhang, and E. Bareinboim, “Causal identification under
markov equivalence: Calculus, algorithm, and completeness,” Advances in Neural In-
formation Processing Systems, vol. 35, pp. 3679–3690, 2022.

[234] J. Pearl, Causality. Cambridge university press, 2009.

[235] W. La Cava et al., “Contemporary symbolic regression methods and their relative
performance,” arXiv preprint arXiv:2107.14351, 2021.

[236] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné, “DEAP:
Evolutionary algorithms made easy,” Journal of Machine Learning Research, vol. 13,
pp. 2171–2175, Jun. 2012.

[237] R. Dubcáková, “Eureqa: Software review,” Genet. Program. Evolvable Mach., vol. 12,
no. 2, pp. 173–178, 2011.

[238] D. A. Abolafia, M. Norouzi, and Q. V. Le, “Neural program synthesis with priority
queue training,” CoRR, vol. abs/1801.03526, 2018.

[239] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning,” Mach. Learn., vol. 8, pp. 229–256, 1992.

[240] F. Sun, Y. Liu, J. Wang, and H. Sun, “Symbolic physics learner: Discovering governing
equations via monte carlo tree search,” in ICLR, 2023.

[241] T. Tohme, D. Liu, and K. Youcef-Toumi, “GSR: A generalized symbolic regression
approach,” Trans. Mach. Learn. Res., vol. 2023, 2023.

[242] N. Jiang and Y. Xue, “Symbolic regression via control variable genetic programming,”
in ECML/PKDD, Springer, 2023, pp. 178–195.

[243] R. Fletcher, Practical methods of optimization. John Wiley & Sons, 2000.

[244] D. J. Wales and J. P. Doye, “Global optimization by basin-hopping and the lowest
energy structures of lennard-jones clusters containing up to 110 atoms,” The Journal
of Physical Chemistry A, vol. 101, no. 28, pp. 5111–5116, 1997.

220

[245] Q. Cappart, D. Bergman, L. Rousseau, I. Prémont-Schwarz, and A. Parjadis, “Improv-
ing variable orderings of approximate decision diagrams using reinforcement learning,”
INFORMS J. Comput., vol. 34, no. 5, pp. 2552–2570, 2022.

[246] L. Song, K. Xue, X. Huang, and C. Qian, “Monte carlo tree search based variable
selection for high dimensional bayesian optimization,” in NeurIPS, 2022.

[247] R. Dechter, Reasoning with Probabilistic and Deterministic Graphical Models: Exact
Algorithms, Second Edition (Synthesis Lectures on Artificial Intelligence and Machine
Learning). Morgan & Claypool Publishers, 2019.

[248] V. Derkinderen, E. Heylen, P. Z. D. Martires, S. Kolb, and L. D. Raedt, “Order-
ing variables for weighted model integration,” in UAI, ser. Proceedings of Machine
Learning Research, vol. 124, AUAI Press, 2020, pp. 879–888.

[249] J. C. Ortiz-Bayliss, I. Amaya, S. E. Conant-Pablos, and H. Terashima-Marín, “Ex-
ploring the impact of early decisions in variable ordering for constraint satisfaction
problems,” Comput. Intell. Neurosci., vol. 2018, 6103726:1–6103726:14, 2018.

[250] H. Li, G. Feng, and M. Yin, “On combining variable ordering heuristics for constraint
satisfaction problems,” J. Heuristics, vol. 26, no. 4, pp. 453–474, 2020.

[251] W. Song, Z. Cao, J. Zhang, C. Xu, and A. Lim, “Learning variable ordering heuris-
tics for solving constraint satisfaction problems,” Eng. Appl. Artif. Intell., vol. 109,
p. 104 603, 2022.

[252] H. Dette and I. Röder, “Optimal discrimination designs for multifactor experiments,”
The Annals of Statistics, vol. 25, no. 3, pp. 1161–1175, 1997. doi: 10 . 1214 / aos /
1069362742. [Online]. Available: https://doi.org/10.1214/aos/1069362742.

[253] M. Yang and J. Stufken, “Identifying locally optimal designs for nonlinear models: A
simple extension with profound consequences,” 2012.

[254] Y. Matsubara, N. Chiba, R. Igarashi, and Y. Ushiku, “SRSD: Rethinking datasets of
symbolic regression for scientific discovery,” in NeurIPS 2022 AI for Science: Progress
and Promises, 2022. [Online]. Available: https://openreview.net/forum?id=oKwyEq
Clqkb.

[255] D. Kulkarni and H. A. Simon, “The processes of scientific discovery: The strategy of
experimentation,” Cogn. Sci., vol. 12, no. 2, pp. 139–175, 1988.

[256] H. Wang et al., “Scientific discovery in the age of artificial intelligence,” Nature,
vol. 620, no. 7972, pp. 47–60, 2023.

[257] L. Todorovski and S. Dzeroski, “Declarative bias in equation discovery,” in ICML,
Morgan Kaufmann, 1997, pp. 376–384.

221

https://doi.org/10.1214/aos/1069362742
https://doi.org/10.1214/aos/1069362742
https://doi.org/10.1214/aos/1069362742
https://openreview.net/forum?id=oKwyEqClqkb
https://openreview.net/forum?id=oKwyEqClqkb

[258] P. Kamienny, G. Lample, S. Lamprier, and M. Virgolin, “Deep generative symbolic
regression with monte-carlo-tree-search,” in ICML, vol. 202, PMLR, 2023.

[259] N. Jiang, M. Nasim, and Y. Xue, “Vertical symbolic regression,” arXiv:2312.11955,
2023.

[260] J. P. Joule, “On the production of heat by voltaic electricity,” in Abstracts of the
Papers Printed in the Philosophical Transactions of the Royal Society of London, 1843,
pp. 280–282.

[261] D. Wierstra, A. Förster, J. Peters, and J. Schmidhuber, “Recurrent policy gradients,”
Log. J. IGPL, vol. 18, no. 5, pp. 620–634, 2010.

[262] J. Kirkpatrick et al., “Pushing the frontiers of density functionals by solving the
fractional electron problem,” Science, vol. 374, no. 6573, pp. 1385–1389, 2021.

[263] J. Jumper et al., “Highly accurate protein structure prediction with alphafold,” Na-
ture, vol. 596, no. 7873, pp. 583–589, 2021.

[264] J. Brence, L. Todorovski, and S. Dzeroski, “Probabilistic grammars for equation dis-
covery,” Knowl. Based Syst., vol. 224, p. 107 077, 2021.

[265] B. Gec, N. Omejc, J. Brence, S. Dzeroski, and L. Todorovski, “Discovery of differential
equations using probabilistic grammars,” in DS, vol. 13601, Springer, 2022, pp. 22–31.

[266] S. d’Ascoli, S. Becker, A. Mathis, P. Schwaller, and N. Kilbertus, “Odeformer: Sym-
bolic regression of dynamical systems with transformers,” in ICLR, OpenReview.net,
2024.

[267] U. Fasel, J. N. Kutz, B. W. Brunton, and S. L. Brunton, “Ensemble-sindy: Robust
sparse model discovery in the low-data, high-noise limit, with active learning and
control,” Proceedings of the Royal Society A, vol. 478, no. 2260, p. 20 210 904, 2022.

[268] Z. Qian, K. Kacprzyk, and M. van der Schaar, “D-CODE: discovering closed-form
odes from observed trajectories,” in ICLR, OpenReview.net, 2022.

[269] N. Jiang, M. Nasim, and Y. Xue, “Vertical symbolic regression via deep policy gra-
dient,” in IJCAI, ijcai.org, 2024, pp. 5891–5899.

[270] J. Medina and A. D. White, “Active learning in symbolic regression performance with
physical constraints,” arXiv preprint arXiv:2305.10379, 2023.

[271] S. H. Strogatz, Nonlinear dynamics and chaos with student solutions manual: With
applications to physics, biology, chemistry, and engineering. CRC press, 2018.

222

[272] E. Lorenz, “Deterministic nonperiodic flow in journal of the atmospheric science,”
1963.

[273] P. Jin et al., “Online symbolic regression with informative query,” in AAAI, AAAI
Press, 2023, pp. 5122–5130.

[274] N. Haut, W. Banzhaf, and B. Punch, “Active learning in genetic programming: Guid-
ing efficient data collection for symbolic regression,” IEEE Transactions on Evolution-
ary Computation, pp. 1–13, 2024. doi: 10.1109/TEVC.2024.3471341.

[275] Q. Chen and B. Xue, “Generalisation in genetic programming for symbolic regres-
sion: Challenges and future directions,” in Women in Computational Intelligence: Key
Advances and Perspectives on Emerging Topics, Springer, 2022, pp. 281–302.

[276] L. S. Keren, A. Liberzon, and T. Lazebnik, “A computational framework for physics-
informed symbolic regression with straightforward integration of domain knowledge,”
Scientific Reports, vol. 13, no. 1, p. 1249, 2023.

[277] N. Haut, B. Punch, and W. Banzhaf, “Active learning informs symbolic regression
model development in genetic programming,” in GECCO Companion, 2023, pp. 587–
590.

[278] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations,” J. Comput. Phys., vol. 378, pp. 686–707, 2019.

[279] K. Egan, W. Li, and R. Carvalho, “Automatically discovering ordinary differential
equations from data with sparse regression,” Communications Physics, vol. 7, no. 1,
p. 20, 2024.

[280] M. Heinonen, Ç. Yildiz, H. Mannerström, J. Intosalmi, and H. Lähdesmäki, “Learning
unknown ODE models with gaussian processes,” in ICML, ser. Proceedings of Machine
Learning Research, vol. 80, PMLR, 2018, pp. 1964–1973.

[281] Z. Li et al., “Fourier neural operator for parametric partial differential equations,” in
ICLR, OpenReview.net, 2021.

[282] A. Wagenmaker and K. G. Jamieson, “Active learning for identification of linear dy-
namical systems,” in COLT, ser. Proceedings of Machine Learning Research, vol. 125,
PMLR, 2020, pp. 3487–3582.

[283] H. Mania, M. I. Jordan, and B. Recht, “Active learning for nonlinear system identi-
fication with guarantees,” J. Mach. Learn. Res., vol. 23, 32:1–32:30, 2022.

[284] O. Sener and S. Savarese, “Active learning for convolutional neural networks: A core-
set approach,” in ICLR, OpenReview.net, 2018.

223

https://doi.org/10.1109/TEVC.2024.3471341

[285] J. T. Ash, C. Zhang, A. Krishnamurthy, J. Langford, and A. Agarwal, “Deep batch ac-
tive learning by diverse, uncertain gradient lower bounds,” in ICLR, OpenReview.net,
2020.

[286] N. Haut, W. Banzhaf, and B. Punch, “Active learning improves performance on sym-
bolic regression tasks in stackgp,” in GECCO Companion, 2022, pp. 550–553.

[287] C. Lüders, T. Sturm, and O. Radulescu, “Odebase: A repository of ode systems for
systems biology,” Bioinformatics Advances, vol. 2, no. 1, vbac027, 2022.

[288] M. Jerrum, Fundamentals of partial rejection sampling, 2021. arXiv: 2106.07744.

[289] E. D. Rosa, E. Giunchiglia, and B. O’Sullivan, “Optimal stopping methods for finding
high quality solutions to satisfiability problems with preferences,” in SAC, ACM, 2011,
pp. 901–906.

[290] A. Ignatiev, A. Morgado, and J. Marques-Silva, “Pysat: A python toolkit for proto-
typing with SAT oracles,” in SAT, ser. Lecture Notes in Computer Science, vol. 10929,
Springer, 2018, pp. 428–437.

[291] N. Prevot, M. Soos, and K. S. Meel, “Leveraging gpus for effective clause sharing in
parallel SAT solving,” in SAT, 2021, pp. 471–487.

[292] T. Wolf et al., “Huggingface’s transformers: State-of-the-art natural language pro-
cessing,” CoRR, vol. abs/1910.03771, 2019. arXiv: 1910 . 03771. [Online]. Available:
http://arxiv.org/abs/1910.03771.

[293] R. Wolfinger and M. O’connell, “Generalized linear mixed models a pseudo-likelihood
approach,” Journal of statistical Computation and Simulation, vol. 48, no. 3-4, pp. 233–
243, 1993.

[294] S. Rose, D. Engel, N. Cramer, and W. Cowley, “Automatic keyword extraction from
individual documents,” Text mining: applications and theory, vol. 1, pp. 1–20, 2010.

[295] G. A. Miller, “Wordnet: A lexical database for english,” Commun. ACM, vol. 38,
no. 11, pp. 39–41, 1995.

[296] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and D. McClosky,
“The stanford corenlp natural language processing toolkit,” in ACL, The Association
for Computer Linguistics, 2014, pp. 55–60.

[297] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for efficient text
classification,” in EACL (2), Association for Computational Linguistics, 2017, pp. 427–
431.

224

https://arxiv.org/abs/2106.07744
https://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771

[298] X. Zhang, J. J. Zhao, and Y. LeCun, “Character-level convolutional networks for text
classification,” in NIPS, 2015, pp. 649–657.

[299] N. J. Nagelkerke et al., “A note on a general definition of the coefficient of determi-
nation,” Biometrika, vol. 78, no. 3, pp. 691–692, 1991.

[300] W. G. L. Cava et al., “Contemporary symbolic regression methods and their relative
performance,” in NeurIPS Datasets and Benchmarks, 2021.

[301] R. Fletcher and C. M. Reeves, “Function minimization by conjugate gradients,” The
computer journal, vol. 7, no. 2, pp. 149–154, 1964.

[302] F. Gao and L. Han, “Implementing the nelder-mead simplex algorithm with adaptive
parameters,” Comput. Optim. Appl., vol. 51, no. 1, pp. 259–277, 2012.

[303] S. C. Endres, C. Sandrock, and W. W. Focke, “A simplicial homology algorithm for
lipschitz optimisation,” J. Glob. Optim., vol. 72, no. 2, pp. 181–217, 2018.

[304] C. Tsallis and D. A. Stariolo, “Generalized simulated annealing,” Physica A: Statis-
tical Mechanics and its Applications, vol. 233, no. 1-2, pp. 395–406, 1996.

[305] J. R. Koza, “Genetic programming as a means for programming computers by natural
selection,” Statistics and computing, vol. 4, pp. 87–112, 1994.

[306] P. Brechmann and A. D. Rendall, “Unbounded solutions of models for glycolysis,”
Journal of mathematical biology, vol. 82, pp. 1–23, 2021.

[307] R. De Bartolo and V. Carbone, “The role of the basic three-modes interaction during
the free decay of magnetohydrodynamic turbulence,” Europhysics Letters, vol. 73, no. 4,
p. 547, 2006.

[308] A. Coddington and N. Levinson, Theory of Ordinary Differential Equations (Interna-
tional series in pure and applied mathematics). McGraw-Hill, 1955, isbn: 9780070992566.

[309] M. Buisson-Fenet, F. Solowjow, and S. Trimpe, “Actively learning gaussian process
dynamics,” in L4DC, ser. Proceedings of Machine Learning Research, vol. 120, PMLR,
2020, pp. 5–15.

[310] S. Becker, M. Klein, A. Neitz, G. Parascandolo, and N. Kilbertus, “Predicting ordi-
nary differential equations with transformers,” in ICML, ser. Proceedings of Machine
Learning Research, vol. 202, PMLR, 2023, pp. 1978–2002.

225

A. Appendix for Chapter 3

A.1 Probability Distribution of Algorithm 2

A.1.1 Definitions and Notations

This section is for the proofs related to the probability distribution in the proposed

Algorithm 2. For convenience, commonly used notations are listed in Table A.1. We make

some slight changes to some notations that appear in the main paper to make sure they are

consistent and well-defined in this proof.

Similar to the previous analysis [95, 288], we begin by introducing the concept “depen-

dency graph” (in Definition A.1.1) for the constraints C.

Definition A.1.1 (Dependency Graph). The dependency graph G = (C, E), where the

vertex set is the set of constraints C. Two vertices ci and cj are connected with an edge

(ci, cj) ∈ E if and only if they are defined on at least one common random variable, i.e.,

var(ci) ∩ var(cj) 6= ∅.

For keeping track of the whole sampling procedure, we need the concept “sampling

record” (in Definition A.1.2) [95], which are those violated constraints at every round in

Algorithm 2. It is also known as the witness tree in [94]. This allows us to check the

constraint satisfaction of the assignment at every round.

Under Condition 3.2.1, for any edge in the dependency graph (ci, cj) ∈ E, either 1(x, ci) =

0 or 1(x, cj) = 0 for all x ∈ X . In other words, two constraints with shared related variables,

representing two adjacent vertices in the dependency graph G, are not broken simultaneously.

Thus, the constraints in record St form an independent set1 over the dependency graph under

Condition 3.2.1.

Definition A.1.2 (Sampling Record). Given dependency graph G(C, E), let Xt = x be

one possible assignment obtained at round t of Algorithm 2. Let St ⊆ C be the set of vertices

in graph G (subset of constraints) that x violates, that is:

St = {ci|ci ∈ C and 1(x, ci) = 0}, (A.1)

1↑A set of vertices with no two adjacent vertices in the graph.

226

Table A.1. Summary of all the notations used in the theoretical analysis of Algorithm 2.
Notation Definition
X = {Xi}n

i=1 set of discrete random variables
x ∈ X possible assignments for variables X
xi ∈ Xi variable Xi can take all values in Xi

C = {cj}m
j=1 given constraints

St ⊆ C subset of constraints violated at round t of Algorithm 2
var(cj) the indices of domain variables that are related to constraint ci

var(St) the indices for domain variables that are related to constraints St

G(C, E) the dependency graph (in Definition A.1.1)
Γ(cj) cj and its direct neighbors in the dependency graph
Γ(St) St and direct neighbors of St in the dependency graph
C\Γ(St) all constraints in C but not in Γ(St)
S1, . . . , ST , ∅ a sampling record of Algorithm 2 (in Definition A.1.2)
1(x, ci) indicator function that evaluates if assignment x satisfies constraint ci

1(x, St) indicator function that evaluates if assignment x satisfies constraints in St

1(x, C) indicator function that evaluates if assignment x satisfies all constraints C
Pθ(X|C\Γ(St)) see Definition A.1.4
P(X|St) see Definition A.1.5

where indicator function 1(x, ci) = 0 implies x violates constraint ci at round t. Define the

sampling record as the sequence of violated constraints S1, . . . , St throughout the execution.

At round t (t ≥ 1) of Algorithm 2, suppose the violated constraints is St ⊆ C. The

constraints that are not adjacent to St in the dependency graph are still satisfied after re-

sample. The only possible constraints that might be broken after the re-sample operation

are among St itself, or those constraints directly connected to St in the dependency graph.

Therefore,

St+1 ⊂ Γ(St), for all t ≥ 1.

where Γ(St) is the set of vertices of St and its adjacent neighbors in the dependency graph G

(see Table A.1). When Algorithm 2 terminates at round T + 1, no constraints are violated

anymore, i.e., sT +1 = ∅. To summarize the above discussion on a sampling record by

Algorithm 2, we have the following Claim A.1.3.

Claim A.1.3. Under Condition 3.2.1, a potential sampling record of length T + 1 by the

Algorithm 2 is a sequence of independent sets: S1, S2, . . . , ST , ∅ with

227

1. St+1 ⊆ Γ(St) and St 6= ∅, for 1 ≤ t ≤ T ;

2. sT +1 = ∅.

Extra Notations related to Constrained MRF. The constrained MRF model over

constraints set C is defined as:

Pθ(X = x|C) = exp(∑n
i=1 θixi)1(x, C)∑

x′∈X exp(∑n
i=1 θix′

i)1(x′, C)

where the partition function only sums over valid assignments in X . Note that C(x) in

Equation (3.6) is the same as 1(x′, C) in the above equation. We slightly change the notations

for consistency in this proof. Also notice that the output distribution can no longer be

factorized after constraints are enforced, since the partition function cannot be factorized.

Our task is to draw samples from this distribution.

To analyze the intermediate steps in Algorithm 2, we further need to define the following

notations.

Definition A.1.4. The constrained MRF distribution for constraints C\Γ(St) is

Pθ(X = x|C\Γ(St)) = exp(∑n
i=1 θixi)1(x, C\Γ(St))∑

x′∈X exp(∑n
i=1 θix′

i)1(x′, C\Γ(St))

where C\Γ(St) denotes all constraints in C but not in Γ(St).

Definition A.1.5. At round t of Algorithm 2, assume St ⊆ C are the set of broken con-

straints, Define P(Xt+1 = x|S1, . . . , St) to be the probability of obtaining a new assignment

x after we re-sample random variables indexed by var(St).

A.1.2 Ratio Property Lemma

Lemma A.1.6 (Ratio Property). Under Condition 3.2.1, assume Algorithm 2 is at round

t. Conditioning on observing one possible sampling record S1, . . . , St, Algorithm 2 step 4 will

re-sample variables in var(St) at round t + 1. Let x, x′ ∈ X be two possible assignments

228

after this re-sample. The probability ratio of obtaining these two results equals that under

constrained MRF Pθ(x|C\Γ(St)):

P(Xt+1 = x|S1, . . . , St)
P(Xt+1 = x′|S1, . . . , St)

= Pθ(X = x|C\Γ(St))
Pθ(X = x′|C\Γ(St))

, (A.2)

where P(Xt+1 = x|S1, . . . , St) is the probability of Algorithm 2 step 4 produces assignment x at

round t+1, conditioning on the observed record S1, . . . , St and re-sample variables indexed by

var(St). Pθ(X = x|C\Γ(St)) is the constrained MRF (for the constraints C\Γ(St)) probability

on assignment x.

Proof. During the intermediate step of the algorithm, assume the set of constraints St

are violated. We want to re-sample variables indexed by var(St), so variables indexed by

var(C\Γ(St)) won’t change assignments. Also, because Γ(St) is the largest possible set of

constraints that can be infected by the re-sample, constraints C\Γ(St) are still satisfied after

the re-sample.

At round t, we re-sample variables in var(St) according to step 4 in Algorithm 2, we thus

have:

P(X t+1
var(St) = xvar(St)|S1 . . . St) =

∏
i∈var(St)

exp(θixi)∑
x′

i∈Xi

exp(θix′
i)

.

Here the notation X t+1
var(St) = xvar(St) means Xi = xi for i ∈ var(St) at round t. For any two

possible assignments x, x′ after the re-sample,

xi = x′
i, for i ∈ {1, . . . , n}\var(St)

since the rest variable’s assignments are kept the same after re-sample.

Based on the above derivations, we can have the ratio:

P(Xt+1 = x|S1, . . . , St)
P(Xt+1 = x′|S1, . . . , St)

=
exp(∑i∈var(St) θixi)
exp(∑i∈var(St) θix′

i)
=

exp(∑i∈var(Γ(St)) θixi)
exp(∑i∈var(Γ(St)) θix′

i)
. (A.3)

229

The last equality holds because every assignment outside var(St) is not changed, we can

enlarge the index set of summation to Γ(St) by multiplying

1 =
exp(∑i∈var(Γ(St)\St) θixi)
exp(∑i∈var(Γ(St)\St) θix′

i)
.

After re-sample, we knows that x must satisfy the constraints C\Γ(St). Thus, the probability

of this x conditioned on constraints C\Γ(St) holding in the constrained MRF model is:

Pθ(X = x|C\Γ(St)) = exp(∑n
i=1 θixi)1(x, C\Γ(St))∑

x′∈X exp(∑n
i=1 θix′

i)1 (x′, C\Γ(St))
= exp(∑n

i=1 θixi)∑
x′∈X exp(∑n

i=1 θix′
i)1 (x′, C\Γ(St))

.

In the constrained MRF model (for constraints C\Γ(St)), the ratio of these two probabilistic

assignments x, x′ is:

Pθ(X = x|C\Γ(St))
Pθ(X = x′|C\Γ(St))

=
exp(∑i∈var(Γ(St)) θixi)
exp(∑i∈var(Γ(St)) θix′

i)
, (A.4)

because the xi outside var(Γ(St)) remains the same.

Note that x, x′ are two possible assignments produced according to to step 4 in Algo-

rithm 2 at round t. Combining Equation (A.3) and Equation (A.4), we conclude that:

P(Xt+1 = x|S1, . . . , St)
P(Xt+1 = x′|S1, . . . , St)

= Pθ(X = x|C\Γ(St))
Pθ(X = x′|C\Γ(St))

.

The proof is finished.

A.1.3 Proof of Theorem 3.3.1

Suppose the re-sampling process terminates at round T +1 and we obtain a valid sample

x. Upon the termination of Algorithm 2, all the constraints are satisfied. So we have:

ST +1 = ∅. In other words, 1(x, C) = 1.

230

Let x, x′ be two possible valid assignments produced at round T + 1 by the Algorithm 2.

Using the analysis in Lemma A.1.6, we can still have:

P(XT +1 = x|S1, . . . , ST)
P(XT +1 = x′|S1, . . . , ST) =

exp(∑i∈var(ST) θixi)
exp(∑i∈var(ST) θix′

i)
.

The probability of this x in the constrained MRF model (for constraints C) is:

Pθ(X = x|C) = exp(∑n
i=1 θixi)1(x, C)∑

x′∈X exp(∑n
i=1 θix′

i)1 (x′, C) = exp(∑n
i=1 θixi)∑

x′∈X exp(∑n
i=1 θix′

i)1 (x′, C) .

Then we conclude that:

P(XT +1 = x|S1, . . . , ST)
P(XT +1 = x′|S1, . . . , ST) = Pθ(X = x|C)

Pθ(X = x′|C) .

Note that this ratio property holds for all the possible sampling records S1, . . . , ST , ∅ gener-

ated from the algorithm 2.

Summation of All Possible Sampling Records. Define P(S1, . . . , ST) to be the prob-

ability of observing record S1, . . . , ST by Algorithm 2. For any possible sampling record

S1, . . . , ST , ∅, the ratio property still holds:

P(XT +1 = x|S1, . . . ST)P(S1, . . . , ST)
P(XT +1 = x′|S1, . . . , ST)P(S1, . . . , ST) = Pθ(X = x|C)

Pθ(X = x′|C)

where the term P(S1, . . . , ST) on the left-hand-side (LHS) is actually the same. After we

summarize over all possible sampling records S1, . . . , ST , ∅, the ratio property still holds. Let

P(XT +1 = x) be the probability of obtaining one valid assignment x by the execution of

Algorithm 2.

P(XT +1 = x)
P(XT +1 = x′) =

∑
S1,...,ST

P(XT +1 = x|S1, . . . , ST)P(S1, . . . , ST)∑
S1,...,ST

P(XT +1 = x′|S1, . . . , ST)P(S1, . . . , ST) = Pθ(X = x|C)
Pθ(X = x′|C) (A.5)

231

Sample Space Analysis At Termination We need one more statement to show Theo-

rem 3.3.1 holds. Let XLLL be the set of all possible assignments x that can be generated by

Algorithm 2:

XLLL =
⋃

S1...ST

{x|P(XT +1 = x|S1, . . . , ST) 6= 0 and P(S1, . . . , ST) 6= 0}.

where P(S1, . . . , ST) 6= 0 means S1, . . . , ST is a possible record. P(XT +1 = x|S1, . . . , ST) 6= 0

means it is possible to obtain x given the record S1, . . . , ST .

Let XC be the set of assignments x that satisfy all the constraints in the constrained

MRF (for constraints C):

XC = {x|Pθ(X = x|C) 6= 0, for all x ∈ X}.

Lemma A.1.7. XLLL ⊆ XC and XC ⊆ XLLL, thus XLLL = XC.

Proof. When Algorithm 2 terminates, it only produces valid assignments; thus, we must

have: XLLL ⊆ XC. On the other hand, there is always a non-zero probability that Algorithm 2

will generate every valid assignment x ∈ XC, which implies that XC ⊆ XLLL. Therefore we

can conclude that XLLL = XC.

Lemma A.1.7 shows that the two distributions have the same sample space when Algorithm 2

terminates. What’s more, Equation (A.5) shows they have the same probability ratio for any

possible valid assignments x, x′. This shows that the execution of the Algorithm 2 is a random

draw from the constrained MRF distribution Pθ(X = x|C). The proof of Theorem 3.3.1 is

finished.

A.1.4 Difference to the Original Proof

The main difference in the above proof to the existing proof in [95, Lemma 7] is that: We

show Lemma A.1.6 that characterizes the proportional ratio of getting different assignments

of variables, which is more general than the descriptive proof for Guo et al., Lemma 7.

232

A.1.5 A Running Example from the Markov Chain Monte Carlo Perspective

We dedicate this section to demonstrate the execution of Algorithm 2 with Example 3.4.1.

Algorithm 2 can be viewed as a Markov chain, so we will show the probability of obtaining

valid samples is unbiased by running thousands of steps of this Markov chain. The constraints

are C = {c1 = (X1 ∨X2), c2 = (¬X1 ∨X3)}. We use each assignment of all variables as the

states s1, . . . , s8 in the rounds of Algorithm 2.

s1 = (X0 = 0, X1 = 0, X2 = 0)

s2 = (X0 = 0, X1 = 0, X2 = 1)

s3 = (X0 = 0, X1 = 1, X2 = 0)

s4 = (X0 = 0, X1 = 1, X2 = 1)

s5 = (X0 = 1, X1 = 0, X2 = 0)

s6 = (X0 = 1, X1 = 0, X2 = 1)

s7 = (X0 = 1, X1 = 1, X2 = 0)

s8 = (X0 = 1, X1 = 1, X2 = 1)

(A.6)

Here s1, s2, s3, s4 correspond to valid variables’ assignments with respect to the constraints

C and s5, s6, s7, s8 correspond to invalid assignments of variables, that requires resampling.

For simplicity, we consider the uniform setting where θ1 = θ2 = θ3. The goal is to sample

every valid assignment with equal probability. Therefore, the probability for every variable

can be simplified as:

P (Xi) =


1
2 for variable Xi taking value 1

1
2 for variable Xi taking value 0

for i = 1, 2, 3.

233

Based on Algorithm 2, we know the probability of transferring from si to sj (1 ≤ i, j ≤ 8).

Thus we can construct the transition matrix between every pair of states:

T =



s1 s2 s3 s4 s5 s6 s7 s8

s1 1 0 0 0 0 0 0 0

s2 0 1 0 0 0 0 0 0

s3 0 0 1 0 0 0 0 0

s4 0 0 0 1 0 0 0 0

s5
1
4

1
4

1
4 0 1

4 0 0 0

s6 0 1
4 0 0 1

4
1
4 0 1

4

s7
1
4 0 1

4
1
4 0 0 1

4 0

s8 0 0 1
4 0 0 1

4
1
4

1
4



(A.7)

where Tij = T (si, sj) denotes the transition probability from state si to state sj.

Taking state s5 as an example, it violates constraint C2 thus X2, X3 will be resampled.

There are 4 possible assignments of X2, X3, which corresponds to states {s1, s2, s3, s5}. Since

each variable is resampled uniformly at random, the probability of transition from state s5

to the states {s1, s2, s3, s5} are 1/4. The Algorithm 2 will terminate once it reaches states

{s1, s2, s3, s4}, which corresponds to those valid states. The valid states only transit to itself

with probability 1. Thus we have T (si, si) = 1 for i = 1, 2, 3, 4.

For a randomly initialized assignment:

x =
[s1 s2 s3 s4 s5 s6 s7 s8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

]
(A.8)

234

that has an equal probability of being any state. After executing Algorithm 2 for 2000 steps,

we have:

T 2000 =



s1 s2 s3 s4 s5 s6 s7 s8

s1 1 0 0 0 0 0 0 0

s2 0 1 0 0 0 0 0 0

s3 0 0 1 0 0 0 0 0

s4 0 0 0 1 0 0 0 0

s5
1
3

1
3

1
3 0 0 0 0 0

s6
1
6

1
2

1
6

1
6 0 0 0 1

4

s7
1
3 0 1

3
1
3 0 0 0 0

s8
1
6

1
6

1
6

1
2 0 0 0 0



, xT 2000 =
[s1 s2 s3 s4 s5 s6 s7 s8

1
4

1
4

1
4

1
4 0 0 0 0

]

(A.9)

This implies Algorithm 2 outputs every valid assignment with the same probability in the

uniform setting, which follows the result in Theorem 3.3.1.

A.2 Running Time Analysis of Algorithm 2

We dedicate this section to showing the running time of Algorithm 2 on a general weighted

case. The expected running time of Algorithm 2 is determined by the number of rounds of

re-sampling. Algorithm 2 re-sample all the related random variables simultaneously in every

single round. However, it is hard to get an estimation of the exact total running time over the

random variables. Instead, we can only have a loose upper bound of the expected running

time over the sequence of sampling record (the sequence of violated constraints).

The overall structure of the proof is similar to the proof in Guo et al., Theorem 13. We

show the difference in our proof at the end of this section.

A.2.1 Definitions and Notations

We define the following terms to simplify our notations.

235

Definition A.2.1. Let St be a subset of vertices in a dependency graph. 1) Define pSt as

the probability of constraints in St being violated:

pSt = P

 ∧
ci∈St

¬ci

 (A.10)

where we use ¬ci to indicate the constraint ci is violated. 2) Define qSt as the probability

that only the constraints in St are violated and nothing else.

qSt = P

 ∧
ci∈St

¬ci ∧
∧

cj∈C\St

cj

 (A.11)

where ∧ci∈St
¬ci corresponds to only the constraints in St are violated and ∧cj∈C\St

cj corre-

sponds to all the rest constraints are satisfied. So q{ci} is the probability that only constraint

ci is broken and all the rest still hold. Similarly, q∅ denotes the probability that all the

constraints are satisfied.

Lemma A.2.2. Given Definition A.2.1, we can further expand qSt under Condition 3.2.1:

qSt = pStP
(
∧cj∈C\Γ(St)cj

)

Proof. We can split qSt into the probability of two independent events:

qSt = P

 ∧
ci∈St

¬ci ∧
∧

cj∈C\St

cj

 By definition of qSt in Equation (A.11)

= P

 ∧
ci∈St

¬ci ∧
∧

cj∈C\Γ(St)
cj


= P

 ∧
ci∈St

¬ci

P

 ∧
cn∈C\Γ(St)

cj


= pStP

(
∧cj∈C\Γ(St)cj

)
. By definition of pSt in Equation (A.10)

236

The second equality holds because under Condition 3.2.1, adjacent vertices have zero prob-

ability. In other words, when we observe that constraints in St are violated, constraints

in Γ(St)\St cannot be violated. The third equality holds because the random variables in

var(St) are independent to those variables in var(C\Γ(St)). So we can apply P (AB) =

P (A)P (B) when the events A, B are independent to each other.

Remark A.2.3 (Equivalence of Record). At round t of Algorithm 2, it finds all the constraints

St that are broken (∧ci∈St
¬ci), which implies the rest of the constraints C\Γ(St) are satisfied

(∧cj∈C\St
cj). Thus the probability of observing St in the record is equivalent to the following:

P(St) = P

 ∧
ci∈St

¬ci ∧
∧

cj∈C\St

cj

 (A.12)

Lemma A.2.4. Given a possible sampling record S1 . . . St−1,St by Algorithm 2, the following

equality holds for the pair (St−1, St):

∑
St

qSt = P(∧ci∈C\Γ(St−1)ci)

Proof. By Definition A.1.2 of the sampling record, we have St ⊂ Γ(St−1). The relationship

of its complement would be:

C\Γ(St−1) ⊂ C\St.

Using the above result, we have:

P

 ∧
cj∈C\St

cj ∧
∧

ck∈C\Γ(St−1)
ck

 = P

 ∧
cj∈C\St

cj

 (A.13)

237

Based on Remark A.2.3 and Baye’s theorem, we have:

P(St| ∧ci∈C\Γ(St−1) ci)

= P

 ∧
ci∈St

¬ci ∧
∧

cj∈C\St

cj

∣∣∣∣ ∧ck∈C\Γ(St−1) ck

 By Equation (A.12)

=
P
(∧

ci∈St
¬ci ∧

∧
cj∈C\St

cj ∧
∧

ck∈C\Γ(St−1) ck

)
P
(
∧ci∈C\Γ(St−1)ci

) By Bayes’s formula

=
P
(∧

ci∈St
¬ci ∧

∧
ck∈C\St

ck

)
P
(
∧ci∈C\Γ(St−1)ci

) By Equation (A.13)

= qSt

P
(
∧ci∈C\Γ(St−1)ci

) . By definition of pSt in Equation (A.11)

(A.14)

Since LHS of Equation (A.14) sums over all possible St is one: ∑St
P(St|∧ci∈C\Γ(St−1) ci) =

1. Thus, summing over St for the RHS of Equation (A.14), we have:

1 =
∑
St

qSt

P
(
∧ci∈C\Γ(St−1)ci

) =
∑

St
qSt

P
(
∧ci∈C\Γ(St−1)ci

) (A.15)

In the second equality, the reason that we can move the summation operator to the numerator

is that the denominator is a constant w.r.t. all possible St. To be specific, given St ⊆ Γ(St−1),

we have St is independent to C\Γ(St−1). Based on Equation (A.15), we finally obtain:

∑
St

qSt = P(∧ci∈C\Γ(St−1)ci).

The proof is finished.

Lemma A.2.5. The probability of observing the sampling record S1, . . . , ST by Algorithm 2

under Condition 3.2.1 is:

P(S1, . . . , ST) = qST

T −1∏
t=1

pSt (A.16)

238

Proof. Given sampling record S1, . . . , St−1, the conditional probability of observing the next

record St, S ′
t can be expanded based on Lemma A.1.6,

P(St|S1, . . . , St−1)
P(S ′

t|S1, . . . , St−1)
= P(St| ∧ci∈C\Γ(St−1) ci)

P(S ′
t| ∧ci∈C\Γ(St−1) ci)

Based on Equation (A.14), we can simplify the RHS of the above ratio equality and obtain:

P(St|S1, . . . , St−1)
P(S ′

t|S1, . . . , St−1)
= qSt

qS′
t

Because of ∑St
P(St|S1, . . . , St−1) = 1 and Equation (A.15), we can get:

P(St|S1, . . . , St−1) = qSt

P(∧ci∈C\Γ(St−1)ci)
(A.17)

We finally compute the probability of observing the sampling record S1 . . . , ST by:

P(S1 . . . , ST) =P(S1)
T∏

t=2
P(St|S1, . . . , St−1) By Chain rule

=qS1

T∏
t=2

qSt

P(∧ci∈C\Γ(St−1)ci)
By Equation (A.17)

=qST

T∏
t=2

qSt−1

P(∧ci∈C\Γ(St−1)ci)
Left shift the numerator from St to St−1

=qST

T −1∏
t=1

pSt Plugin Lemma A.2.2

The proof is finished.

A.2.2 An Upper Bound on Expected Running Time

Suppose the expected number of samplings of constraints ci is E(Ti), then the total

running time will be:

E(T) ≤
n∑

i=1
E(Ti)

Since each random variable has equal status, then the question comes down to the com-

putation of individual Ti’s expectation. Let S1, . . . , ST be any record of the algorithm that

239

successfully terminates, and Ti(S1, . . . , ST) be the total number of sampling related to con-

straint ci throughout this record. Based on Lemma A.2.5, we have:

E(Ti) =
∑

S1,...,ST

P(S1, . . . , ST)Ti(S1, . . . , ST)

By far, we have shown the original proof of our work. We leave the difference between our

proof with the existing one in Appendix A.2.3.

The rest of the computation can be done in the same way as the proof in Guo et al. Thus

we cite the necessary intermediate steps in the existing work and finish the proof logic for

the coherence of the whole running time analysis.

Lemma A.2.6 (Guo et al. Lemma 12). Let q∅ be a non-zero probability of all the con-

straints are satisfied. Let q{cj} denote the probability that only constraint cj is broken and

the rest all hold. If q∅ > 0, then E(Ti) = q{cj}/q∅.

After incorporating our fix, we can conclude the upper bound on the expected running

time in Theorem A.2.7.

Theorem A.2.7 (Guo et al. Theorem 13). Under Condition 3.2.1, the total number of

re-samplings throughout the algorithm is then 1
q∅

∑L
j=1 q{cj}.

A.2.3 Difference to the Existing Proof

The main difference in the above proof to the existing proof in [95, Theorem 13] is that:

based on Equation (A.17) and (A.14), we show

P(St|S1, . . . , St−1) = P(St| ∧ci∈C\Γ(St−1) ci)

In Guo et al.’s Equation (9), the first step cannot hold without the above equality. The

original paper uses this result directly without providing enough justification.

240

A.3 Constrained MRF Model

A.3.1 Single Variable Form of Constrained MRF

Here we provide an example of transforming MRF with pairwise and single potential

functions into a single potential form by introducing extra variables. Given random variables

X1, X2, X3, we have the following example MRF model:

φθ(x1, x2, x3) = θ1x1 + θ2x2 + θ3x1x2

Pθ(x) = exp(φθ(x1, x2, x3))
Z(θ)

In the above formula, we have a cross term x1x2. Two Boolean variables can have 4

different assignments in total. Therefore we can construct 4 extra Boolean variables to

encode all these assignments. To illustrate, we introduce extra random variables X̂00, X̂01,

X̂10, X̂11. We further introduce extra constraints: When X1 = 0, X2 = 0, the extra variable

must take values: X̂00 = 1, X̂01 = 0, X̂10 = 0, X̂11 = 0. See the rest constraints in Table A.2.

X1 X2 X̂00, X̂01, X̂10, X̂11
0 0 1, 0, 0, 0
0 1 0, 1, 0, 0
1 0 0, 0, 1, 0
1 1 0, 0, 0, 1

Table A.2. 4 constraints for converting pairwise terms in the potential func-
tion into single variable form.

Then the new potential function, including extended variables and pairwise to single

variable constraints C, is reformulated as:

φ̂θ(x1, x2, x3, x̂00, x̂01, x̂10, x̂11) = θ1x1 + θ2x2 + θ3x̂00 + θ3x̂01 + θ3x̂10 + θ3x̂11

Pθ(x|C) = exp(φ̂θ(x1, x2, x3, x̂00, x̂01, x̂10, x̂11))
ZC(θ)

241

For clarity, the newly added constraints do not impact Condition 3.2.1. Since the single

variable transformation in the MRFs model originates from Sang et al., thus is not considered

as our contribution.

A.3.2 Gradient of log-Partition Function

We use the Chain rule of the gradient to give a detailed deduction of Equation (3.4).

∇ log ZC(θ) = ∇ZC(θ)
ZC(θ) = 1

ZC(θ)∇
∑
x∈X

exp (φθ(x)) C(x)

=
∑
x∈X

exp(φθ(x))C(x)
ZC(θ) ∇φθ(x)

=
∑
x∈X

Pθ(x|C)∇φθ(x)

= Ex∼Pθ(x̃|C) [∇φθ(x)]

(A.18)

The above result shows the gradient of the constrained partition function is equivalent to

the expectation of the gradient of the potential function ∇φθ over the model’s distribu-

tion Pθ(x̃|C). Therefore, we transform the gradient estimation problem into the problem of

sampling from the current MRF model.

A.4 Experiment Settings and Configurations

A.4.1 Implementation Details

Implementation of Nelson. The proposed sampler can be implemented with Numpy,

Pytorch, or Jax. We further offer a “batch version” implementation, that draws a batch of

samples in parallel on GPU. The batched sampler is useful for those tasks that require a

huge number of samples to estimate the gradient with a small approximation error.

In Section 3.4.1, we define vector of assignment xt = (xt
1, . . . , xt

n), where xt
i is the assign-

ment of variable Xi in the t-th round of Algorithm 2. xt
i = 1 denotes variable Xi takes value

242

1 (or true). In the batch version, we define the matrix for a batch of assignments. Let b be

the batch size, we have

xt =


xt

11 . . . xt
1n

...

xt
b1 . . . xt

bn


In the following part, we provide the detailed computation pipeline for the batch version of

the proposed algorithm.

Initialization. The first step is to sample an initial assignment of X from the given the

marginal probability vector P :

x1
li =


1 if uli > Pi,

0 otherwise.

, if 1 ≤ i ≤ n, 1 ≤ l ≤ b (A.19)

Here uli is sampled from the uniform distribution over [0, 1].

Check Constraint Satisfaction The second step extracts which constraint is violated.

Given an assignment xt at round t ≥ 1, tensor W and matrix b, the computation of tensor

Zt is:

Zt
lik =

n∑
i=1

Wikjx
t
lj + blik,

The special multiplication between tensor and matrix can be efficiently implemented with

the Einstein summation2

St
lj = 1− max

1≤k≤K
Zljk, for 1 ≤ j ≤ L, 1 ≤ l ≤ b

Here St
lj = 1 indicates xt

l violates j-th clause. We can check ∑b
l=1

∑L
j=1 St

lj 6= 0 to see if any

clause is violated for the current batch of assignments, which corresponds to ∑b
i=1 C(xl) = 0.

2↑https://github.com/dgasmith/opt_einsum. Note that Zt
ljk = 1 indicates for l-th batched assignment xl,

the k-th literal of j-th clause is true (takes value 1). Next, we compute St
lj as:

243

https://github.com/dgasmith/opt_einsum

Extract Variables in Violated Clauses. We extract all the variables that require resam-

pling based on vector St computed from the last step. The vector of the resampling indicator

matrix At can be computed as:

At
li = 1

 L∑
j=1

St
ljVji ≥ 1

 , for 1 ≤ i ≤ n, 1 ≤ l ≤ b

where ∑L
j=1 St

ljVji ≥ 1 implies Xli requires resampling.

Resample. Given the marginal probability vector P , resample indicator matrix At and

assignment matrix xt, we draw a new random sample xt+1.

xt+1
li =


(1− At

li)xt
li + At

li if uli > Pi,

(1− At
li)xt

li otherwise.

for 1 ≤ i ≤ n, 1 ≤ l ≤ b

where uli is drawn from the uniform distribution in [0, 1].

Since GPUs are more efficient at computing tensor, matrix, and vector operations but

are slow at processing for loops. Drawing a batch of samples using the above extended

computational pipeline is much faster than using a for loop over the computational pipeline

in Section 3.4.1.

The sampler is involved with one hyper-parameter Ttryout. Nelson would terminate

when it reaches Ttryout number of re-samples. This practice is commonly used to handle

randomized programs that might run forever in rare cases.

Implementation of Algorithm 3 We first use the Constraints C and parameters θt to build

the current Nelson module. Then we draw m samples from Nelson module {x̃j}m
j=1 and

draw from dataset randomly m samples {xj}m
j=1. Continuing from that point, we compute

the potential value from the two sets of inputs, i.e., {φθ(x̃j)}m
j=1 and {φθ(x̃j)}m

j=1. Pytorch

would be slow if we compute each potential’s gradient using a for-loop. To bypass this

problem, we instead compute the following:

`C(θ) = 1
m

m∑
j=1

φθ(xj)− 1
m

m∑
j=1

φθ(x̃j). (A.20)

244

Nelson
Constraints C

from constrained MRF

from training dataset

x̃1 ∼ Pθ(X |C)

x1 ∼ D

Parameters of
constrained MRF θt

ϕ(x̃1)

ϕ(x1)

Draw samples from
model and from data

Update parameters
 of constrained MRF

Compute potential
in constrained MRF model

θt+1 = θt − ∇ℓC(θ)ℓC(θ) = ϕ(x1) − ϕ(x̃1)

Construct the proposed
Nelson sampler

Training set
D = {xk}N

k=1

Figure A.1. Implementation pipeline of the Nelson-CD algorithm with
m = 1. The proposed Nelson can be efficiently adapted to a Pytorch-based
machine learning library and enforces constraint satisfaction during learning.

Following that, we call the PyTorch library’s gradient function, which computes exactly

∇`C(θ) = ∇
 1

m

m∑
j=1

φθ(xj)− 1
m

m∑
j=1

φθ(x̃j)
 = 1

m

m∑
j=1
∇φθ(xj)− 1

m

m∑
j=1
∇φθ(x̃j)

Note that ∇`C(θ) recovers the result in Equation (3.4). Finally, we update the parameters

θ. The proposed Nelson module and the neural network are computed on the same GPU

device. This allows us to exploit the parallel computing power of modern GPUs and remove

time for the data transfer from CPU to GPU or vice versa. See Figure A.1 for a visualized

overview of the implementation with Pytroch.

A.4.2 Learn Random K-SAT Solutions with Preference

Task Definition We are given a training set D containing some preferred assignments

D = {xj}N
j=1 for the corresponding CNF formula c1∧ . . .∧cL. We require the CNF formula to

be true. This means, by the definition of CNF formulas, that every clause has to be satisfied.

These clauses become our set of constraints. Under the constrained MRF model, the learning

task is to maximize the log-likelihood of the assignments seen in the training set D. The

inference task is to generate valid solutions from the learned model’s distribution [116, 289].

245

Dataset We denote the Boolean variables’ size in K-SAT as the “problem size”. We consider

several datasets of different problem sizes generated from CNFGen3 [117] random K-SAT

functions. K is fixed as 5; the number of variables and clauses are kept the same, ranging

from 10 to 1500. We generate 100 different CNF formulas for every problem size. To generate

the training set D, we use the Glucose4 solver from PySAT4 library [290] to generate 200

assignments randomly as the preferred assignments for every formula.

Note that we don’t consider datasets like SATLIB and SAT competitions. This is mainly

because these datasets are hard instances with a much larger input space but a limited

number of solutions. Nelson would generally take exponential time to find these solutions,

just like finding needles in a haystack. The other reason is that using neural networks to

learn these limited assignments is straightforward since we can simply hard-wire the network

to memorize all the valid assignments. The main purpose of this work is to let a constrained

MRF learn a representation for the underlying preference pattern, not create a neural solver

that can generate valid assignments for any CNF formula. Thus, we conform to the settings

of the easy formula where obtaining valid solutions is easy.

A.4.3 Learn Sink-Free Orientation in Undirected Graphs

Task Definition In graph theory, a sink-free orientation of an undirected graph is a

choice of orientation for each edge such that every vertex has at least one outgoing edge [130].

It has wide applications in robotics routing and IoT network configuration [131]. The con-

straint for this problem is that every vertex has at least one outgoing edge after orientation.

As stated in [95], these constraints satisfy Condition 3.2.1.

See Figure A.2 for an example graph and one possible sink-free edge orientation. We

define binary variables X1, . . . , Xm, and associate variable Xi to edge ei for 1 ≤ i ≤ m.

Variable Xi takes value 1 if the edge orientation is vi → vj where i < j. Otherwise, Xi takes

value 0. The constraints are:

C = (X1 ∨X2) ∧ (¬X1 ∨X3 ∨ ¬X4) ∧ (¬X2 ∨ ¬X3 ∨X5) ∧ (X4 ∨ ¬X5)
3↑https://github.com/MassimoLauria/cnfgen
4↑https://pysathq.github.io/

246

https://github.com/MassimoLauria/cnfgen
https://pysathq.github.io/

v1

v2

v3

(a) An undirected graph G with its adjacency matrix A

v4
A =


v1 v2 v3 v4

v1 0 1 1 0
v2 1 0 1 1
v3 1 1 0 1
v4 0 1 1 0


e1

e2

e3

e4

e5

v1

v2

v3

(b) An orientation of the edges and the orientation matrix x

v4
x =


v1 v2 v3 v4

v1 0 1 1 0
v2 0 0 1 0
v3 0 0 0 1
v4 0 1 0 0


e1

e2

e3

e4

e5

Figure A.2. (a) An un-directed graph G(V, E) where the vertices are
V = {v1, v2, v3, v4} and the un-directed edges are E = {e1 = (v1, v2), e2 =
(v1, v3), e3 = (v2, v3), e4 = (v2, v4), e5 = (v3, v4)}. (b) A possible sink-free ori-
entation of the edges in the graph and its matrix representation x, where every
vertex has at least one outgoing edge.

where the single constraint c1 = (X1 ∨X2) corresponds to vertex v1, constraint c2 = (¬X1 ∨

X3∨¬X4) corresponds to vertex v2, constraint c3 = (¬X2∨¬X3∨X5) corresponds to vertex

v3, and constraint c4 = (X4 ∨ ¬X5) corresponds to vertex v4. The orientation assignment

matrix x shown in Figure A.2(b) implies: X1 = 1, X2 = 1, X3 = 1, X4 = 0, X5 = 1.

Notations Let graph G(V, E) be an un-directed graph; its adjacency matrix A that repre-

sents graph connectivity is:

Aij =


1 If (vi, vj) ∈ E

0 otherwise
(A.21)

A possible assignment for the orientation of every edge can be represented as a matrix

x ∈ {0, 1}|V |×|V |:

xij =


1 if the edge orientation is vi → vj

0 otherwise
(A.22)

247

In the constrained MRF model defined in Equation (3.6), the potential function of one

orientation of all edges is

φθ(x) =
|V |∑
i=1

|V |∑
j=1

θijAijxij

A single constraint for vertex vk is ck(x) = 1
(∑n

j=1 Ak,jxk,j = 1
)
. If there is no ongoing edge

of vertex vk. The constraint function C(x) is defined as: ∏n
i=1 ck(x). In Algorithm 2 step 1,

edge (vi, vj) will pick the orientation vi → vj with probability:

exp(θijAijxij)
exp(θjiAjixji) + exp(θijAijxij)

Dataset We use the NetworkX5 package to generate random Erdos Renyi graph with edge

probability 0.55. The problem size refers to the number of vertices in the graph, we range

the problem size from 10 to 100. For each problem size, we generate 100 different random

undirected graphs. We then convert the graph into CNF form using the above edge-variable

conversion rule. Afterward, we follow the same processing steps as the previous problem

that learn preferential solution distribution for random K-SAT. .

A.4.4 Learn Vehicle Delivery Routes

Given a set of locations to visit, the task is to generate a sequence to visit these locations

in which each location is visited once and only once and the sequence closely resembles the

trend presented in the training data. The training data are such routes collected in the past.

The dataset is constructed from TSPLIB, which consists of 29 cities in Bavaria, Germany.

In Figure 3.3, we see Nelson can obtain samples of this delivery problem highly efficiently.

A possible travel plan can be represented as a matrix x ∈ {0, 1}|V |×|V |:

xij =


1 if edge vi → vj is selected

0 otherwise
(A.23)

The constraints are that every routing plan should visit every location once and only once.
5↑https://networkx.org/

248

Similarly, in the constrained MRF model defined in Equation (3.6), the potential function

of the vehicle routing plan is

φθ(x) =
|V |∑
i=1

|V |∑
j=1

θijAijxij

A.4.5 Detailed Baselines Configuation

In terms of sampling-based methods, we consider:

• Gibbs sampler [118], a special case of MCMC that is widely used in training MRF mod-

els. In each step, the Gibbs algorithm samples one dimension based on a conditional

marginal distribution. We follow this implementation6.

• Weighted SAT samplers, including WAPS7 [119], WeightGen8 [120] and XOR sam-

pler9 [121, 122].

• Uniform SAT samplers, including UniGen10 [125], QuickSampler11 [124], CMSGen12 [123]

and KUS13 [126].

Currently, there are only GPU-based SAT solvers [127, 291] and model counters [128], GPU-

based SAT samplers are not available by far.

A.4.6 Detailed Definition of Evaluation Metrics

In terms of evaluation metrics, we consider

• Training time per epoch. The average time for the whole learning method to finish

one epoch with each sampler.

• Validness. The learned model is adopted to generate assignments and we evaluate the

percentage of generated assignments that satisfy the constraints.
6↑https://github.com/Fading0924/BPChain-CD/blob/master/mrf.py
7↑https://github.com/meelgroup/waps
8↑https://bitbucket.org/kuldeepmeel/weightgen/src/master/
9↑https://cs.stanford.edu/~ermon/code/srcPAWS.zip
10↑https://github.com/meelgroup/unigen
11↑https://github.com/RafaelTupynamba/quicksampler
12↑https://github.com/meelgroup/cmsgen
13↑https://github.com/meelgroup/KUS

249

https://github.com/Fading0924/BPChain-CD/blob/master/mrf.py
https://github.com/meelgroup/waps
https://bitbucket.org/kuldeepmeel/weightgen/src/master/
https://cs.stanford.edu/~ermon/code/srcPAWS.zip
https://github.com/meelgroup/unigen
https://github.com/RafaelTupynamba/quicksampler
https://github.com/meelgroup/cmsgen
https://github.com/meelgroup/KUS

• Mean Averaged Precision (MAP@10). This is a ranking-oriented metric that can eval-

uate the closeness of the learned MRF distribution to the goal distribution. If the

model learns the goal distribution in the training set, then it would assign a higher

potential value to those assignments in the training set than all the rest unseen as-

signments. Based on this principle, we randomly pick two sets of inputs in those valid

assignments: seen assignments from the training set and unseen assignments that are

randomly generated. We use the value of factor potential φ(x) to rank those assign-

ments in ascending order. Next, we check how many preferred solutions can fall into

the Top-10 by computing the following

MAP@10 =
10∑

k=1

#preferred assignments among top-k
k

• log-likelihood of assignments in the training set D. The model that attains the highest

log-likelihood learns the closest distribution to the training set. Specifically, given a

training set D = {xk}N
k=1 and parameters θ, the log-likelihood value is:

1
N

N∑
k=1

log Pθ(X = xk|C) = 1
N

N∑
k=1

φθ(xk)− log ZC(θ) (A.24)

We use the ACE algorithm to compute the approximated value of log ZC(θ)14.

• Approximation Error of ∇ log ZC(θ), that is the L1 distance between the exact gradient

of log ZC(θ) in Equation (3.4) and the empirical gradient from the sampler. For small

problem sizes, we enumerate all x ∈ X to get the exact gradient and draw samples

{x̃j}m
j=1 with m = 2000 from every sampler for approximation.

∣∣∣∣ ∑
x∈X

exp
(∑n

j=1 θjxj

)
C(x)

ZC(θ) xi︸ ︷︷ ︸
Exact gradient term

−
m∑

j=1
x̃j

i︸ ︷︷ ︸
Estimated gradient with sampler

∣∣∣∣

For fixed parameter θ, the best sampler would attain the smallest approximation error.
14↑http://reasoning.cs.ucla.edu/ace/moreInformation.html

250

http://reasoning.cs.ucla.edu/ace/moreInformation.html

A.4.7 Hyper-parameter Settings

In the implementation of Nelson, we set the maximum tryout of resampling as Ttryout =

1000 for all the experiments and all the datasets.

For the hyper-parameters used in learning the constrained MRF, we set the number of

samples from the model to be m = 200, the learning rate η is configured as 0.1 and the total

learning iterations are Tmax = 1000.

0 20 40 60
Number of resamples

0

25

50

75

100

C
ou

nt

|X|=|C|=500

LLL
Nelson (ours)

0 20 40 60
Number of resamples

0

25

50

75

100

C
ou

nt

|X|=|C|=700

LLL
Nelson (ours)

0 20 40 60
Number of resamples

0

25

50

75

100

C
ou

nt

|X|=|C|=1000

LLL
Nelson (ours)

0 20 40 60
Number of resamples

0

25

50

75

100

C
ou

nt

|X|=|C|=1500

LLL
Nelson (ours)

(a) Uniform Case.

0 20 40 60
Number of resamples

0

25

50

75

100

C
ou

nt

|X|=|C|=500

LLL
Nelson (ours)

0 20 40 60
Number of resamples

0

25

50

75

100

C
ou

nt

|X|=|C|=700

LLL
Nelson (ours)

0 20 40 60
Number of resamples

0

25

50

75

100

C
ou

nt

|X|=|C|=1000

LLL
Nelson (ours)

0 20 40 60
Number of resamples

0

25

50

75

100

C
ou

nt

|X|=|C|=1500

LLL
Nelson (ours)

(b) Weighted Case.

Figure A.3. The distribution of resampling steps in the Nelson and
Algorithmic-LLL [94]. Both of them get a valid sample within Ttryouts. Nel-
son takes much fewer resamples than Algorithmic-LLL because it resamples
all the violated clauses at every iteration while Algorithmic-LLL only resam-
ples one of them.

251

B. Appendix for Chapter 4

B.1 Detailed Experiment Settings

In this section, we detail our experimental settings for interrogative, imperative, and

sentimental sentence generation tasks, along with the process of human evaluation.

In the expression of stationary distribution Equation(4.1), the first term PLM(x) is evalu-

ated by the BERT model, which is based on the huggingface’s BERT implementation [292].

We use BERT-base in our experiments, with hyper-parameters: L=12, H=768, A=12, Total

Parameters=110M. To evaluate the term PLM(x) with the BERT model, we multiply the

BERT score of masking and querying the conditional probability of each word in sentence

x, close in form of the pseudo-likelihood [293]. Since we only require π(x) to be proportional

to PLM(x) times the constraint score, PLM(x) does not need to be normalized.

B.1.1 Interrogative Sentences Generation

According to the adapted definition of interrogative sentence grammar, the first word

should be a question word, and there should be an auxiliary verb at a suitable position. In

our actual implementation, we also enforce that there should be only one question word and

one auxiliary verb in the sentence in order to improve the quality of generated sentences.

The question words include what, when, where, which, who, whom, whose, why, how; the

auxiliary verbs include do, does, did, be, am, are, is, was, were, shall, will, should, would,

can, could, may, might, must.

For the task of generating interrogative sentences with keywords, we also enforce that

the keyword only appears once in the sentence.

The dataset of this task is based on the SQuAD 2.0 dataset [150], where we select 600

questions and remove the stop words using the Rake toolkit [294].

252

B.1.2 Imperative Sentences Generation

The dataset for generating imperative sentences is retrieved from1. We select 300 sen-

tences and extract the keywords from the sentences as our input. According to the grammar

of imperative sentences, we need to verify if the word is a present-tense verb. In the im-

plementation, we use the POS tag information in WordNet and Stanford CoreNLP as the

criterion for deciding the word POS tag of the given word. We first select all the words with

at least one verb meaning in WordNet [295], then use Stanford CoreNLP [296] to get POS

tags for each word and only preserve the present tense form of verbs.

B.1.3 Sentiment Sentence Generation

This application requires a set of input keywords and an external sentiment classifier,

which is used to estimate whether the sentiment of the sentence is positive or not. To estimate

the sentiment score of the sentences, we train a sentiment analysis model with fastText [297]

on Yelp Review Polarity dataset [298]. The input keywords are extracted from 300 selected

sentences in the Yelp test set. Half of the original sentences are positive, and the other half

are negative (which is harder to transform into positive sentences).

With input keywords of positive and negative sentiment, we enforce the model to generate

sentences with positive sentiment. The second sub-task with negative sentiment keywords

is much more difficult than the sub-task with positive sentiment keywords, as it requires

transforming from negative to positive sentiment.

B.2 Case Studies

As shown in Table B.1, we compare some output sentences of our method with the

baseline using the same inputs and keywords. From these cases, we can see that the baseline

sometimes generates awkward or disordered sentences. For example, the baseline generates

one sentence:“how was lower Normandy ever truly founded?”. Although this sentence seems

to satisfy the constraints of an interrogative sentence, its meaning is awkward. The sentence
1↑https://github.com/lettergram/sentence-classification

253

https://github.com/lettergram/sentence-classification

Keywords university warsaw established
TSMH (Ours) when was the technical university of warsaw first formally established?
CGMH Polish Polytechnical Institute - university of technology warsaw -

was established here in 1964?

Keywords organization charge running
TSMH (Ours) who would charge her with running such an organization?
CGMH who else would charge him with running a very profitable business?

Keywords tribes khan fight
TSMH (Ours) what tribes would fight back against the Genghis khans?
CGMH why else would tribesmen like gen. and gen. genghis khan fight them off?

Keywords European travel amazon
TSMH (Ours) why did early european explorers not travel to amazonia?
CGMH see below, also : did any european settlers ever travel to build the

”first North American sailing canoes”?

Keywords economic growth schooling
TSMH (Ours) how do economic growth rates in the united states make children

receive high - quality schooling?
CGMH what good is economic growth in comparison with being among the best

in public schooling?
(1) Interrogative Sentences

Keywords seat
TSMH (Ours) please get up from your seat
CGMH go on in and take your seat

Keywords careful
TSMH (Ours) please be so very very careful.
CGMH and please be a very very careful

Keywords turn, lights
TSMH (Ours) turn on the lights all the time
CGMH turn on near all the main lights

Keywords close, window
TSMH (Ours) stay close enough to the window
CGMH stick close enough to meet the window

Keywords nice, weekend
TSMH (Ours) have yourself a very nice private weekend
CGMH please be nice about spending the weekend

(2) Imperative Sentences

Table B.1. Case study of generating interrogative and imperative sentences
with keywords.

254

generated by our method is “when was the duchy of Normandy founded?”, which is more

realistic. Also, the sentence from the baseline “and please be a very very careful” does not

follow imperative grammar, and “the Catholics are now mainly concentrated there” is not a

question.

255

C. Appendix for Chapter 5

C.1 Convergence Analysis of the Maximum Likelihood Learning

C.1.1 Basic Definitions and Properties

The following definitions are related to the convergence analysis of the gradient-descent-

based approaches.

Definition C.1.1 (L-Smoothness). A function L : Rd → R is noted as L-smooth with

smoothness constant L ≥ 0 if and only if for all θ1, θ2 ∈ Rd,

‖∇L(θ1)−∇L(θ2)‖2 ≤ L‖θ1 − θ2‖2 (C.1)

Remark C.1.2. In the above definition about the L-smoothness, Equation (C.1) can be equiv-

alently reformulated as:

L(θ1) ≤ L(θ2) + 〈∇L(θ2), θ1 − θ2〉+ L

2 ‖θ1 − θ2‖2
2 (C.2)

Lemma C.1.3 (Mean value property). Let function L : [θ1, θ2] → R be continuous on

the closed interval [θ1, θ2], and differentiable on the open interval (x1, x2), where θ1 < θ2.

Then there exists θ̃ ∈ (θ1, θ2) such that

∇L(θ̃) = L(θ2)− L(θ1)
θ2 − θ1

(C.3)

The following definitions and properties are matrix-related terms and notations.

Definition C.1.4 (Covariance Matrix). The covariance matrix of a random vector X ∈

Rd with mean vector µ is defined via:

Cov(X) = E[(X − µ)(X − µ)>] (C.4)

For the diagonal term, (i, i)th of this covariance matrix is the variance of Xi:

Var(Xi) = E[(Xi − µi)2] (C.5)

256

The off-diagonal (i, j)th element (where i 6= j) of this covariance matrix Cov(X) is given by

Cov(X)ij = E[(Xi − µi)(Xj − µj)] (C.6)

Definition C.1.5 (Matrix L2-Norm). Given matrix A ∈ Rm×n, the matrix L2-norm is

defined as:

‖A‖2 = max
x 6=0

‖Ax‖
‖x‖2

= max
‖x‖2=1

‖Ax‖2 (C.7)

Lemma C.1.6. If matrix A is symmetric and positive definitive, then all the eigenvalues

are positive. Let λmax be the largest eigenvalue of A, then

‖A‖2 = max
1≤i≤d

|λi| = |λmax| = λmax (C.8)

Definition C.1.7 (Leibniz formula for determinants). The Leibniz formula for the de-

terminant of the square matrix det(A) is

det(A) =
∑

π

d∏
i=1

sgn(π)Ai,πi
(C.9)

where π is a permutation for the index set {1, . . . , n}; the sum in the RHS is over all

permutations π of {1, . . . , n}; sgn is the sign function of permutations in the permutation

group, which returns +1 and −1 for even and odd permutations1, respectively; Ai,πi
is the

element in i-th row and πi-th column of matrix A.

Definition C.1.8 (Trace of Matrix). The trace of a square matrix A ∈ Rd×d, noted as

tr(A), is the sum of the diagonal elements of A: Tr(A) = ∑d
i=1 Ai,i.

Lemma C.1.9. The trace of a symmetric matrix A ∈ Rd×d is equal to the sum of its

eigenvalues: Tr(A) = ∑d
i=1 λi.

Proof. Recall the characteristic equation of matrix A is:

det(xI− A) = (x− λ1) . . . (x− λd) (C.10)
1↑https://en.wikipedia.org/wiki/Parity_of_a_permutation

257

https://en.wikipedia.org/wiki/Parity_of_a_permutation

Observe that the coefficient of xd−1 in the RHS is equal to −∑d
i=1 λi. To prove the claim

above, it is enough to show that the coefficient of xd−1 is the negative of the trace of A.

According to Definition C.1.7, the Leibniz formula for the determinant of the square

matrix det(xI− A) is

det(xI− A) =
∑

π

d∏
i=1

sgn(π)(xI− A)i,πi
(C.11)

Observe that for every permutation π in the RHS either πi = i for all i or there exists at

least two indices i, j such that πi = i and πj = j. But the latter case does not give any

monomial of degree d − 1 in x. It can only give monomials of degree at most d − 2. Now,

consider the terms coming from the identity permutation π as the coefficient of xn−1 comes

from this permutation. It follows that such a permutation has sign +1. So we just need to

figure out the coefficient of xd−1 coming from the product of diagonal entries of the matrix

xI− A,
d∏

i=1
(xI− A)i,i =

d∏
i=1

(xI− Ai,i) (C.12)

The RHS is exactly the negative of the sum of diagonal entries of A. The proof is completed.

C.2 The Relationship between Variance and L-smoothness

Lemma C.2.1. LLB(θ) is V arPθ
(φ(a))-smooth w.r.t. θ.

Proof. According to Definition C.1.1, to show LLB(θ) L-smooth, it is equivalent to show

that

‖∇LLB(θ1)−∇LLB(θ2)‖2 ≤ L‖θ1 − θ2‖2,

where θ1, θ2 ∈ Rd and L is a constant. Based on the mean value lemma C.1.3, there exists a

point θ̃ ∈ (θ1, θ2) such that

∇LLB(θ1)−∇LLB(θ2) =
(
∇2LLB(θ̃)

)
(θ1 − θ2).

258

where ∇2LLB(θ) ∈ Rd×d is the gradient for the function ∇LLB(θ). ∇2LLB(θ) is also the

hessian matrix for the function LLB(θ). Taking the L2 norm on both sides, we have

‖∇LLB(θ1)−∇LLB(θ2)‖2 =‖∇2LLB(θ̃)(θ1 − θ2)‖2 ≤ ‖∇2LLB(θ̃)‖2 ‖θ1 − θ2‖2

Then, the task is to bound the matrix L2-norm ‖∇2LLB(θ̃)‖2.

Lemma C.2.2. By definition of the log-partition function log Zφ = log∑a′∈A exp(φ(a′)), its

gradient vector ∇ log Zφ is the expectation of the function φ(a) under probability distribution

Prθ(a). The hessian matrix of ∇2 log Zφ is the covariance matrix of function φ(a) under

probability distribution Prθ(a). That is,

∇ log Zφ = Ea∼P rθ(a)[φ(a)],

∇2 log Zφ = Covθ[φ(a)] = Ea∼P rθ(a)
(
(φ(a)−∇ log Zφ) (φ(a)−∇ log Zφ)>

)
.

(C.13)

Since we know the explicit form of LLB(θ), which is

where ∇2LLB(θ) is the co-variance matrix. Denote Covθ[φ(a)], which is symmetric and

positive semi-definite. We have

‖∇2LLB(θ̃)‖2 = ‖Covθ[φ(a)]‖2 = λmax, By Lemma C.1.6 (C.14)

where λmax is the maximum eigenvalue of the matrix Covθ[φ(a)]. Then because of the

positive semi-definiteness of the co-variance matrix, all the eigenvalues are non-negative. By

Lemma C.1.9, we can bound λmax as

λmax ≤
d∑

i=1
λi = Tr(Covθ[φ(a)]),

259

where Tr(Covθ[φ(a)]) is the trace of matrix Covθ[φ(a)]. By Definition C.1.8, Tr(Covθ[φ(a)]) is

equal to the summation of diagonal terms in the covariance matrix, which is the summation

of all the variance terms ∑d
i=1 Var(φ(a))iPrθ(a). We have

‖∇2LLB(θ̃)‖2 = ‖Covθ̃[φ(a)]‖2 ≤
d∑

i=1
Var(φ(a))iPrθ(a)

Finally, we have

‖∇LLB(θ1)−∇LLB(θ2)‖2 ≤ L ‖θ1 − θ2‖2.

where L = ∑d
i=1 Var(φ(a))iPrθ(a). This completes the proof.

C.3 Proof of Theorem 5.3.2

Lemma C.3.1 (Recursion). For all 1 ≤ t ≤ T ,

E[LLB(θt+1)]− LLB(θ∗) ≤ E[1
2η

(‖θt − θ∗‖2
2 − ‖θt+1 − θ∗‖2

2)] + ηCov2

M
.

Proof. According to the gradient update rule, we have

θt+1 = θt − ηgt

By L-smooth of LLB (in Remark C.1.2), we have for the t-th iteration,

LLB(θt+1) ≤ LLB(θt) + 〈∇LLB(θt), θt+1 − θt〉+ L

2 ‖θt+1 − θt‖2
2,

= LLB(θt)− η〈∇LLB(θt), gt〉+ Lη2

2 ‖gt‖2.

260

Because of E[gt]2 = E[‖gt‖2
2]− V ar(gt), by taking expectation on both sides w.r.t. gt we get

E[LLB(θt+1)] = LLB(θt)− ηE[gt]2 + Lη2

2 E[‖gt‖2
2],

= LLB(θt)− η(E[‖gt‖2
2]− V ar(gt)) + Lη2

2 E[‖gt‖2
2],

≤ LLB(θt)− η(1− Lη

2)E[‖gt‖2
2] + ηCov2

M
,

≤ LLB(θt)−
η

2E[‖gt‖2
2] + ηCov2

M
.

where the last inequality follows as Lη ≤ 2. Because LLB is convex, we get

LLB(θt)− LLB(θ∗) ≤ 〈∇LLB(θt), θt − θ∗〉

We further have,

E[LLB(θt+1)] ≤ LLB(θ∗) + 〈∇LLB(θt), θt − θ∗〉 − η

2E[‖gt‖2
2] + ηCov2

M
,

= LLB(θ∗) + 〈E[gt], θt − θ∗〉 − η

2E[‖gt‖2
2] + ηCov2

M
,

= LLB(θ∗) + E[〈gt, θt − θ∗〉 − η

2‖gt‖2
2] + ηCov2

M
.

we now repeat the calculations by completing the square for the middle two terms to get

E[LLB(θt+1)] ≤ LLB(θ∗) + E[1
2η

(‖θt − θ∗‖2
2 − ‖θt − θ∗ − ηgt‖2

2)] + ηCov2

M
,

= LLB(θ∗) + E[1
2η

(‖θt − θ∗‖2
2 − ‖θt+1 − θ∗‖2

2)] + ηCov2

M
.

Theorem 5.3.2 states the function value of the output of PALM, in expectation converges

to the true optimum within a small constant distance at a linear speed w.r.t. the number of

iterations T .

261

Proof. Summing the above equations for t = 0, . . . , T − 1, we get

T −1∑
t=0

E[LLB(θt+1)− LLB(θ∗)] ≤ 1
2η

(‖θ0 − θ∗‖2
2 − E[‖θT − θ∗‖2

2]) + T
ηCov2

M

≤ ‖θ0 − θ∗‖2
2

2η
+ T

ηCov2

M
.

Finally, by Jensen’s inequality, TLLB(θT) ≤ ∑T
t=1 LLB(θt), thus,

T −1∑
t=0

E[LLB(θt+1)− LLB(θ∗)] = E[
T∑

t=1
LLB(θt)]− TLLB(θ∗)

≥ TE[LLB(θT)]− TLLB(θ∗).

Combining the above equations we get

E[LLB(θT)]− LLB(θ∗) ≤ ‖θ0 − θ∗‖2
2

2ηT
+ ηCov2

M
.

This completes the proof.

262

D. Appendix for Chapter 6

D.1 Proof of Lemma 6.3.2

Proof. Because all operands are binary, a symbolic expression tree of l nodes has l+1
2 leaves

and l−1
2 internal nodes. The number of binary trees of l−1

2 internal nodes is given by the

Cantalan number C(l−1)/2 = l−1
l+1

(
l−1

(l−1)/2

)
, which asymptotically scales at 2l−1

(l−1
2)3/2√

π
. A sym-

bolic expression replaces each internal node of a binary tree with an operand and replaces

each leaf with either a constant or one of the input variables. Because there are o operands

and m input variables, the total number of different symbolic expression trees involving l

nodes is given by:

A(l) = C(l−1)/2(m + 1)
l+1

2 o
l−1

2 = l − 1
l + 1

(
l − 1

(l − 1)/2

)
(m + 1)

l+1
2 o

l−1
2

∼ (4(m + 1)o) l−1
2(

l−1
2

)3/2 . (D.1)

Hence, the total number of trees up to l nodes is:

S(l) =
(l−1)/2∑

i=0
A(2i + 1) ∼

(l−1)/2∑
i=0

(4(m + 1)o)i

i3/2 . (D.2)

When i is sufficiently large,

(4(m + 1)o)i/2 ≤ (4(m + 1)o)i

i3/2 ≤ (4(m + 1)o)i. (D.3)

Therefore,

S(l) ≤
(l−1)/2∑

i=0
(4(m + 1)o)i ∈ O((4(m + 1)o)(l−1)/2),

and

S(l) ≥ (4(m + 1)o)(l−1)/2/((l − 1)/2)3/2 ≥ (4(m + 1)o)(l−1)/4,

which implies

S(l) ∈ Ω((4(m + 1)o) l−1
4).

263

D.2 Experiment Settings

D.2.1 Dataset Configuration

Synthesised datasets We generated several families of multiple-variable ground-truth ex-

pressions, and use these expressions to generate the datasets for control variable experiments

{(xi, yi)}n
i=1. We label the datasets by 1) the set of mathematical operators that can be

included in the ground-truth expression that generates the dataset; 2) the number of inde-

pendent variables m; 3) the number of single terms of the ground-truth expression; 4) the

number of cross terms of the ground-truth expression. We write items 2), 3), and 4) into a

tuple in various charts and tables to represent the dataset.

These four characteristics of the ground-truth expression determine the complexity of

learning the ground-truth expression from the dataset. To give an example, one ground-

truth expression that generates a dataset labeled by the “inv, +,−,×” operators with

configuration (2, 1, 1) can be:

0.4967− 0.6824
x1

− 0.7346x1

x0

This expression contains two variables x1, x2, a cross term x1
x0

with a constant coefficient

0.7346, a single term 1/x1 with a constant coefficient 0.6824, and a constant 0.4967. We give

more examples of such ground-truth expressions in Table D.1.

Dataset Configs Example expression
(2,1,1) 0.497− 0.682/x1 − 0.735x1/x0
(3,2,2) −0.603x0x1 + 0.744x0 + 0.09x1/x2 + 0.562 + 0.582/x2

(a) Datasets containing operands {inv, +,−,×} .
(2,1,1) 0.259x0 sin(x1) + 0.197x1 − 0.750
(3,2,2) −0.095x0x2 + 0.012x2 sin(x1)− 0.576x2 − 0.214 cos(x0)− 0.625

(b) Datasets containing operands {sin, cos, +,−,×} .
(2,1,1) 0.7272 sin(x0)− 0.3866 + 0.183/x0
(3,2,2) 0.7167x0/x2 − 0.0632x1 + 0.2746x2 cos(x1)− 0.7293 + 0.0627/x2

(c) Datasets containing operands {sin, cos, inv, +,−,×} .

Table D.1. Example expressions used in our experiments with different
dataset configurations and the set of operands.

264

Noisy Dataset Setting. In real scientific experiments, the datasets often contain noises.

We add Gaussian noise N (0, σ2) to the output y in the dataset and control the noise rate

by varying the values of σ in {0.02, 0.04, 0.08, 0.1, 0.12, 0.14}.

D.2.2 Evaluation Metrics

Given a dataset {(xi, yi)}n
i=1 generated from the ground-truth expression φ, where n

indicates the number of test samples. The empirical variance of the target values σy is

defined as:

σ2
y = 1

n

n∑
i=1

(
yi −

∑n
i=1 yi

n

)2

(D.4)

During training and testing, we measure the goodness-of-fit of a candidate expression φ̄, by

evaluating the following Mean-square error (MSE), Negative Mean-square error (MSE), nor-

malized Mean-square error (NMSE), normalized root Mean-squared error (NRMSE), Invese

normalized root Mean-squared error (InvNRMSE):

MSE = 1
n

n∑
i=1

(yi − φ̄(xi))2,

NegMSE = − 1
n

n∑
i=1

(yi − φ̄(xi))2,

NMSE = 1
n

∑n
i=1(yi − φ̄(xi))2

σ2
y

,

RMSE =
√√√√ 1

n

n∑
i=1

(yi − φ̄(xi))2,

NRMSE = 1
σy

√√√√ 1
n

n∑
i=1

(yi − φ̄(xi))2

InvNRMSE = 1
1

σy

√
1
n

∑n
i=1(yi − φ̄(xi))2

(D.5)

D.2.3 Baselines implementation

GP The implementation is based on the deap package1. However, we re-implemented the

code following the concept of their package.
1↑https://github.com/DEAP/deap

265

https://github.com/DEAP/deap

CVGP GP DSR PQT GPMeld Eureqa

Reward function NegMSE NegMSE InvNRMSE InvNRMSE InvNRMSE NegRMSE
Training set size 25, 600 25, 600 50, 000 50, 000 50, 000 50, 000
Testing set size 256 25, 600 256 256 256 256

Batch size 256 256 1024 1024 1024 N/A
#CPUs for training 1 1 4 4 4 1
ε-risk-seeking policy N/A 0.02 0.02 0.02 N/A N/A

#genetic generations 100 100 N/A N/A 60 10,000
#Hall of fame 10 10 25 25 25 N/A

Mutation Probability 0.5 0.5 0.5 N/A N/A N/A
Mating Probability 0.5 0.5 0.5 N/A N/A N/A

training time (hours) ∼0.5 ∼0.5 ∼0.5 ∼0.5 ∼6 ∼0.5

Table D.2. Major hyper-parameters settings for all the algorithms considered
in the experiment.

CVGP Our method is implemented on top of the GP following Algorithm 5.

Eureqa This algorithm is currently maintained by the DataRobot webiste2. We use the

python API provided 3 to send the training dataset to the DataRobot website and collect

the predicted expression after 30 minutes. This website only allows us to execute their

program under a limited budget. Due to budgetary constraints, we were only able to test

the datasets for the noiseless settings. For the Eureqa method, the fitness measure function

is negative RMSE. We generated large datasets of size 105 in training each benchmark.

DSR, PQT, GPMeld These algorithms are evaluated based on an implementation in 4.

For every ground-truth expression, we generate a dataset of sizes 105 training samples. Then

we execute all these baselines on the dataset with the configurations listed in Table D.2. For

the four baselines (i.e., PQT, VPG, DSR, GPMeld), the reward function is INV-NRMSE,

which is defined as 1
1+NRMSE .

Note that Wolfram was not considered in this research, because the current “FindFormula”

function in the Wolfram language only supports searching for single variable expressions.
2↑https://docs.datarobot.com/en/docs/modeling/analyze-models/describe/eureqa.html
3↑https://pypi.org/project/datarobot/
4↑https://github.com/brendenpetersen/deep-symbolic-optimization

266

https://docs.datarobot.com/en/docs/modeling/analyze-models/describe/eureqa.html
https://pypi.org/project/datarobot/
https://github.com/brendenpetersen/deep-symbolic-optimization

D.2.4 Hyper-parameter Configurations

We list the major hyper-parameter setting for all the algorithms in Table D.2. Note

that if we use the default parameter settings, the GPMeld algorithm takes more than 1

day to train on one dataset. Because of such slow performance, we cut the number of

genetic programming generations in GPMeld by half to ensure fair comparisons with other

approaches.

D.3 Extended Experimental Analysis

Quantile of NMSE Metric. In Figure D.1, we show the five-number summary for the

NMSE metric in Table 6.1, i.e., the minimum, 25% quartile, median, 75% quartile, and

maximum. In Figure D.2, we show the five-number summary for the NMSE metric in

Table 6.2. For the datasets considered, our CVGP shows a consistent improvement over all

the baselines.

267

CVGP (ours)

GP VPG PQT DSRGPMeld
Eureqa

10−4

10−2

100

102
N

M
SE

inv (4, 4, 6)

CVGP (ours)

GP VPG PQT DSRGPMeld
Eureqa

10−2

100

102

104

N
M

SE

inv (5, 5, 5)

CVGP (ours)

GP VPG PQT DSRGPMeld
Eureqa

10−1

102

105

N
M

SE

inv (5, 5, 8)

CVGP (ours)

GP VPG PQT DSRGPMeld
Eureqa

100

103

106

N
M

SE

inv (6, 6, 8)

CVGP (ours)

GP VPG PQT DSRGPMeld
Eureqa

10−1

101

103

105

N
M

SE

inv (6, 6, 10)

CVGP (ours)

GP VPG PQT DSRGPMeld
Eureqa

10−2

100

102

104

N
M

SE

sin, cos (4, 4, 6)

CVGP (ours)

GP VPG PQT DSRGPMeld
Eureqa

10−2

100

102

N
M

SE

sin, cos (5, 5, 5)

CVGP (ours)

GP VPG PQT DSRGPMeld
Eureqa

10−2

100

N
M

SE

sin, cos (5, 5, 8)

CVGP (ours)

GP VPG PQT DSRGPMeld
Eureqa

10−2

10−1

100

N
M

SE

sin, cos (6, 6, 8)

CVGP (ours)

GP VPG PQT DSRGPMeld
Eureqa

10−1

101

N
M

SE

sin, cos (6, 6, 10)

CVGP (ours)

GP VPG PQT DSRGPMeld
Eureqa

10−3

10−1

101

N
M

SE

sin, cos, inv (4, 4, 6)

CVGP (ours)

GP VPG PQT DSRGPMeld
Eureqa

10−1

101

103

N
M

SE

sin, cos, inv (5, 5, 5)

CVGP (ours)

GP VPG PQT DSRGPMeld
Eureqa

10−2

10−1

100

101

N
M

SE

sin, cos, inv (5, 5, 8)

CVGP (ours)

GP VPG PQT DSRGPMeld
Eureqa

10−1

101

103

105

N
M

SE

sin, cos, inv (6, 6, 8)

CVGP (ours)

GP VPG PQT DSRGPMeld
Eureqa

10−2

100

102

104

N
M

SE

sin, cos, inv (6, 6, 10)

Figure D.1. Quartiles of NMSE values of all the methods over several noise-
less datasets. Our CVGP shows a consistent improvement over all the baselines
considered, among all the datasets.

268

CVGP (ours)

GP VPG PQT DSRGPMeld

10−1

101

103
N

M
SE

inv (4, 4, 6)

CVGP (ours)

GP VPG PQT DSRGPMeld

10−1

101

103

N
M

SE

inv (5, 5, 5)

CVGP (ours)

GP VPG PQT DSRGPMeld

10−1

101

103

N
M

SE

inv (5, 5, 8)

CVGP (ours)

GP VPG PQT DSRGPMeld

10−1

100

101

N
M

SE

inv (6, 6, 8)

CVGP (ours)

GP VPG PQT DSRGPMeld

100

102

N
M

SE

inv (6, 6, 10)

CVGP (ours)

GP VPG PQT DSRGPMeld

10−1

101

N
M

SE

sin, cos (4, 4, 6)

CVGP (ours)

GP VPG PQT DSRGPMeld

100

103

106

N
M

SE

sin, cos (5, 5, 5)

CVGP (ours)

GP VPG PQT DSRGPMeld

10−1

101

103

N
M

SE

sin, cos (5, 5, 8)

CVGP (ours)

GP VPG PQT DSRGPMeld

10−1

100

101

102

N
M

SE

sin, cos (6, 6, 8)

CVGP (ours)

GP VPG PQT DSRGPMeld

100

102

104

N
M

SE

sin, cos (6, 6, 10)

CVGP (ours)

GP VPG PQT DSRGPMeld

10−2

10−1

100

101

N
M

SE

sin, cos, inv (4, 4, 6)

CVGP (ours)

GP VPG PQT DSRGPMeld

10−1

101

N
M

SE

sin, cos, inv (5, 5, 5)

CVGP (ours)

GP VPG PQT DSRGPMeld

10−1

101

N
M

SE

sin, cos, inv (5, 5, 8)

CVGP (ours)

GP VPG PQT DSRGPMeld

10−1

100

101

102

N
M

SE

sin, cos, inv (6, 6, 8)

CVGP (ours)

GP VPG PQT DSRGPMeld

10−1

100

101

N
M

SE

sin, cos, inv (6, 6, 10)

Figure D.2. Quartiles of NMSE values of all the methods over several noisy
datasets. Our CVGP shows a consistent improvement over all the baselines
considered, among all the datasets.

269

E. Appendix for Chapter 7

E.1 Implementation

Please find our code repository. It contains 1) the implementation of our Racing-CVGP

method, 2) the list of datasets, and 3) the implementation of several baseline algorithms.

E.2 Genetic Programming Algorithm in Racing-CVGP

For the FreezeEquation function used in Algorithm 7, we use Figure E.1 to demonstrate

the output. The FreezeEquation function will reduce the size of candidate nodes to be

edited in the GP algorithms and increase the probability of finding expression trees with

close-to-zero fitness scores.

Reduced form expression tree

×
cosc2

x1

+
c1 0

01
0

0
1 +

x3c1

Reduced form expression tree

0
0

1

Output of 𝙵𝚛𝚎𝚎𝚣𝚎𝙴𝚚𝚞𝚊𝚝𝚒𝚘𝚗Output of 𝙵𝚛𝚎𝚎𝚣𝚎𝙴𝚚𝚞𝚊𝚝𝚒𝚘𝚗

(a) controlled variable .xc = {x2, x3} (b) controlled variable .xc = {x1, x2}

Figure E.1. Visualization of the FreezeEquation function. 0 implies the
node is non-editable and 1 implies the node is editable, by the GP algorithm.
The FreezeEquation function will increase the probability of finding expres-
sion trees with close-to-zero fitness scores.

The pipeline of Genetic Programming in our Racing-CVGP framework is presented in

Algorithm 8. It is a minimally modified genetic programming algorithm for symbolic regres-

sion.

For the Mutate step, the algorithm will apply one of the operations for the chosen ex-

pression tree:

1. Find a leaf node that is not frozen and then replace the node with a generate a full

expression tree of maximum depth involving variables only in x \ xc.

2. Find a node and replace it with a node of the same arity. Here arity is the number of

operands taken by an operator. For example, the arity of binary operators {+,−,×,÷}

is 2 and the arity of unary operators {sin, cos, log, exp} is 1.

270

3. Inserts a node at a random position, and the original subtree at the location becomes

one of its subtrees.

4. Delete a node that is not frozen, use one of its children to replace its position.

For the Mate step, we will pick two expressions φl, φj from the population pool P that

has the same control variables xc,l = xc,j. Then we exchange two randomly chosen subtrees

in the expressions. Because applying mating over two expressions with different control

variables does not necessarily result in two better expressions.

271

Algorithm 8: GP(P , DataOracle, K, M, #Gen, #Hof, Pmu, Pma, Op)
Input: Initial GP Pool P ; DataOracle; # control variable trials K; GP pool size

Np; # of generations #Gen; #expressions in hall-of-fame set #Hof; mutation

node library Op.

Output: The GP pool and the updated hall of fame set.

1 Parameters: mutate probability Pmu; mate probability Pma;

2 for i← 1 to #Gen do

3 Pnew ← ∅; for 〈φnew, π, xc〉 ∈ P do

4 if with probability Pmu then

5 //mutation;

6 φnew ← Mutate(φnew, Op, x \ xc);

7 {Dk}K
k=1 ← DataOracle(φnew, xc, K);

8 o, c ← Optimize(φnew, {Dk}K
k=1);

9 Pnew ← Pnew ∪ {〈φnew, o, c, π, xc〉};

10 P ← Pnew; Pnew ← ∅;

11 for 〈φl, πl, xc,l〉, 〈φj, πj, xc,j〉 ∈ P do

12 //mating;

13 if with probability Pma and xc,l = xc,j then

14 // pick two expressions with the same xc;

15 φl, φj ← Mate(φl, φj);

16 {Dk}K
k=1 ← DataOracle(φl, xc,l, K);

17 ol, cl ← Optimize(φl, {Dk}K
k=1);

18 {Dk}K
k=1 ← DataOracle(φj, xc,j, K);

19 oj, cj ← Optimize(φj, {Dk}K
k=1);

20 Pnew ← Pnew ∪ {〈φl, ol, cl, πl, xc,l〉, 〈φj, o, cj, πj, xc,j〉};

21 H ← TopK(Pnew ∪H, K = #Hof); ; // Update the hall of fame set

22 return GP pool and hall-of-fame Pnew,H.

272

E.3 Experiment Settings

E.3.1 Dataset Configuration

Livermore2 Dataset The list of Livermore2 datasets is summarized at1. In Tables E.1, E.2,

E.3, we details the exact equation of Livermore2 [180]. The operator set for each expression

is available in the codebase.

The list of Feynamn datasets is collected from2. In Tables E.4, E.5. We only use a subset

of the expressions in the original Feynman dataset. The challenging part for this dataset is

the ranges of input variables vary greatly. For example, in one equation with ID “ICh34Eq8”

the ranges of all the variables are:

x1 ∈ (10−11, 10−9), x2 ∈ (105, 107), x3 ∈ (10, 103), x4 ∈ (109, 1011) (E.1)

In comparison, the input ranges of the Livermore2 dataset are xi ∈ (0.01, 10). The operator

set for each expression is available in the codebase.

E.3.2 Evaluation Metrics

We mainly consider two evaluation criteria for the learning algorithms tested in our work:

1) the goodness-of-fit measure and 2) the total running time of the learning algorithms.

The goodness-of-fit indicates how well the learning algorithms perform in discovering un-

known symbolic expressions. Given a testing dataset Dtest = {(xi, yi)}n
i=1 generated from

the ground-truth expression φ, we measure the goodness-of-fit of a predicted expression φ̄,

by evaluating the mean-squared-error (MSE) and normalized-mean-squared-error (NMSE):

MSE = 1
n

n∑
i=1

(yi − φ̄(xi))2, NMSE =
1
n

∑n
i=1(yi − φ̄(xi))2

σ2
y

RMSE =
√√√√ 1

n

n∑
i=1

(yi − φ̄(xi))2, NRMSE = 1
σy

√√√√ 1
n

n∑
i=1

(yi − φ̄(xi))2

(E.2)

1↑https://github.com/brendenpetersen/deep-symbolic-optimization/blob/master/dso/dso/task/regression/
benchmarks.csv
2↑https://github.com/omron-sinicx/srsd-benchmark/blob/main/datasets/feynman.py

273

https://github.com/brendenpetersen/deep-symbolic-optimization/blob/master/dso/dso/task/regression/benchmarks.csv
https://github.com/brendenpetersen/deep-symbolic-optimization/blob/master/dso/dso/task/regression/benchmarks.csv
https://github.com/omron-sinicx/srsd-benchmark/blob/main/datasets/feynman.py

Table E.1. Detailed equation in Livermore2 datasets (part-1).
Livermore2 (n = 4)

Equation ID n Expression
Vars4-1 4 x1 − x2x3 − x2 − x4
Vars4-2 4 x1

√
x2x4/x3

Vars4-3 4 2x1 + x4 − 0.01 + x3/x2
Vars4-4 4 x1 − x4 − (−x1 + sin(x1))4/(x8

1x
2
2x

2
3)

Vars4-5 4 x1 + sin(x2/(x1x
2
2x

2
4(−3.22x2x

2
4 + 13.91x2x4 + x3)/2 + x2))2

Vars4-6 4 (−x1 − 0.54 exp(x1sqrt(x4 + cos(x2)) exp(−2x1)))/x3
Vars4-7 4 x1 + cos(x2/ log(x2

2x3 + x4))
Vars4-8 4 x1(x1 + x4 + sin((−x1 exp(exp(x3)) + x2)/(−4.47x2

1x3 + 8.31x3
3 + 5.27x2

3)))− x1
Vars4-9 4 x1 − x4 + cos(x1(x1 + x2)(x2

1x2 + x3) + x3)
Vars4-10 4 x1 + (x1(x4 + (√x2 − sin(x3))/x3))1/4

Vars4-11 4 2x1 + x2(x1 + sin(x2x3)) + sin(2/x4)
Vars4-12 4 x1x2 + 16.97x3 − x4
Vars4-13 4 x4(−x3 − sin(x2

1 − x1 + x2))
Vars4-14 4 x1 + cos(x2

2(−x2 + x3 + 3.23) + x4)
Vars4-15 4 x1(x2 + log(x3 + x4 + exp(x2

2)− 0.28/x1))− x3 − x4
2x1x3

Vars4-16 4 x3(−x4 + 1.81/x3) +
√

x2(−x2
1 exp(x2)− x2)− 2.34x4/x1

Vars4-17 4 x2
1 − x2 − x2

3 − x4

Vars4-18 4 x1 + sin(2x2 + x3 − x4 exp(x1) + 2.96
√
−0.36x3

2 + x2x2
3 + 0.94 + log((−x1 + x2) log(x2)))

Vars4-19 4 (x3
1x2 − 2.86x1 + x4)/x3

Vars4-20 4 x1 + x2 + 6.21 + 1/(x3x4 + x3 + 2.08)
Vars4-21 4 x1(x2 − x3 + x4) + x4
Vars4-22 4 x1 − x2x3 + x2 exp(x1)− x4
Vars4-23 4 −x1/x2 − 2.23x2x3 + x2 − 2.23x3/

√
x4 − 2.23√x4 + log(x1)

Vars4-24 4 −4.81 log(
√

x1

√
log(x1(x1x2 + x1 + x4 + log(x3))))

Vars4-25 4 0.38 + (−x1/x4 + cos(2x1x3/(x4(x1 + x2x3)))/x4)/x2

where the empirical variance σy =
√

1
n

∑n
i=1

(
yi − 1

n

∑n
i=1 yi

)2
. Note that the coefficient of

determination (R2) metric [299, 300] is equal to (1 − NMSE) and therefore omitted in the

experiments.

E.3.3 Baseline Implementation

Racing-CVGP Our method is implemented on top of the GP following Algorithm 6. See

the codebase for more details.

GP The implementation is based on the version in “baselines” of DSO package3. However,

we re-implemented the code following the concept of their package.

CVGP The implementation is available at4.
3↑https://github.com/DEAP/deap
4↑https://github.com/jiangnanhugo/cvgp

274

https://github.com/DEAP/deap
https://github.com/jiangnanhugo/cvgp

Table E.2. Detailed equation in Livermore2 datasets (part-2).
Livermore2 (n = 5)

Equation ID n Expression
Vars5-1 5 −x1 + x2 − x3 + x4 − x5 − 4.75

Vars5-2 5 x3

(
x1 + x5 + 0.27

(x2
3+ (x2+x4)

(x1x2+x2))

)
Vars5-3 5 2x1x2x3 + x5 − sin(x1 log(x2)− x1 + x4)
Vars5-4 5 x2 + x3x4 + x2

5 + sin(x1)
Vars5-5 5 x5 + 0.36

√
(log(x1x2 + x3 + log(x2 + x4)))

Vars5-6 5 x1x4 + x1 + x2 + x5 +
√

(0.08x1/(x3x5) + x3)
Vars5-7 5 x1x5 +

√
(x1x2 cos(x1)− x1/(x2 + x3 + x4 + 8.05))

Vars5-8 5
√

(x2)x3 − x4 − 0.07(x1 + (x1 − x2)
√

(x2 − 0.99)) cos(x5)
Vars5-9 5 x1(x3 + (x1 + x2)/(x2x4 + x5))
Vars5-10 5 x1/(x4(−0.25x1x3x4 + x2 − 8.43x4x5) sin(x3 + log(x2))) + x4x5

Vars5-11 5 −x2
4 +

√
x1(x3+x5)−x2+x5

x3
+ 0.47

√
x3

x1−√
x2+x2

x2

Vars5-12 5 x1
(
x2 − 1

x3(x4+x5)

)
Vars5-13 5

√
(x1(x5(x2 − 1.52)− cos(4.03x3 + x4)))

Vars5-14 5 −x1/(x2x5) + cos(x1x3x4 exp(−x2))
Vars5-15 5 −x4 + log(x1/ log(11.06x2x

2
5) + x3)− cos(x2 + x5 +

√
(x2x5))

Vars5-16 5 x2 + 0.33x5(x1/(x2
1 + x2) + x3x

(
43/2))

Vars5-17 5 x1 − sin(x2) + sin(x3)− cos(−x2 +
√

(x4) + x5) + 0.78
Vars5-18 5 x1x2 − x4 − (

√
(x2

3/(x1(x3 + x4)))− 1.13/x3)/x5

Vars5-19 5 4.53x1x2 + x1 − x1 cos(
√

(x2))/x2 − x3 − x4 − x5

Vars5-20 5 − exp(x1 + x5) + sin(x1 − 4.81)/(0.21(x5 − log(x3 + x4)− exp(x5))/x2)
Vars5-21 5

√
(x4)(2x1 + cos(x1(x3x4 exp(x1x2) + x3 − log(x3)− 3.49))/x5)

Vars5-22 5 −x1 − x2 + x3 +
√

(x1 − x2(sin(x3)− log(x1x5/(x2
2 + x4))/x4))− 0.73

Vars5-23 5 x1(x2/(x3 +
√

(x2(x4 + x5))(−x3 + x4))− x5)

Vars5-24 5 −x2x5 +
√

(x1 + x2(−x1 + x4 cos(√x3 + x3)− x2+7.84x2
3x5

x5
) + x2

x3

Vars5-25 5 x1 + log(x1(−3.57x2
1x2 + x1 + x2 + x3 log(−x1x4 sin(x3)/x5 + x3)))

Eureqa This algorithm is currently maintained by the DataRobot webiste5. We use the

python API provided 6 to send the training dataset to the DataRobot website and collect

the predicted expression after 30 minutes. This website only allows us to execute their
5↑https://docs.datarobot.com/en/docs/modeling/analyze-models/describe/eureqa.html
6↑https://pypi.org/project/datarobot/

275

https://docs.datarobot.com/en/docs/modeling/analyze-models/describe/eureqa.html
https://pypi.org/project/datarobot/

Table E.3. Detailed equation in other small-scale datasets (part-3). n stands
for the number of maximum variables.

Livermore2 (n = 6)
Equation ID n Expression

Vars6-1 6 x1 − x6 + (x1 + x4 + x5)
√

(x2
1 + x2 − x3)

Vars6-2 6 x1(2x2 + x2/x3 + x4 + log(x1x5x6))
Vars6-3 6

√
(x2 + x5 − x6 + x4

3x
4
4/(x1x4

2))
Vars6-4 6 x1(x2(x2

1 + x1)− x2 + x2
3 − x3 − x5 − x6 − sin(x4)− cos(x4))2

Vars6-5 6 x2

√
(x1x2)(x1x3 − x3 − x4) + x5 + x6

Vars6-6 6 (x1/(x2x3 + log(cos(x1))2)− x2x4 + sin((x2x4 + x5)/x6) + cos(x3)) log(x1)
Vars6-7 6 x1

√
(x1 − x2

6 + sin((x1 exp(−x2)− x4(x2 + x2
3))/(x2 + x5)))

Vars6-8 6 x1 + x2
2 + 0.34x3x5 − x4 + x6

Vars6-9 6 x4(x1 + exp(13.28x2
3x6 − x2

5 log(x4
2))/(x1x3 − x2

2 + x2 − x6 − log(x3)))
Vars6-10 6 x1 + 61.36x6

2 + x2/(x1x3(x4 − cos(x4(2x1x2x6/x5 + x5))))
Vars6-11 6 (x1 + x1/(x2 + x4(8.13x2

1x6 + x1x2x3 + 2x2 + x5 + x6)))2

Vars6-12 6 (
√

2
√

(x1)− x2 − x3/
√

(x4(8.29x1x2
3 + x1x5) + x4 + x6))/x6

Vars6-13 6 x1 + x5 + 0.21
√

(x1/(x2
2x

2
3

√
(x6)(

√
(x3) + x3 + 2x6 + (x2 + x4 + x5)/x5)))

Vars6-14 6 −2.07x6 + log(x2 − x6 −
√

(x3(x5 + log(−x1 + x5 + 1))/x4))
Vars6-15 6 x1(x1 + cos(x2

2x3x4(x5 − 0.43x2
6)))/x4

Vars6-16 6 −
√

(x1)− x1 + x2 − x4 − x5 −
√

(x6/x3)− 3.26
Vars6-17 6 x1/(x2x4(−x5 + log(x2

6 cos(2x2 + x2
3 − x4)2))(129.28x2

1x
2
2 + x3))

Vars6-18 6 √
x5(2x1 + cos(x1(x3x4 exp(x1x2) + x3 − log(x3)− 3.49))/x6)

Vars6-19 6 x1 + x2 + x3 + 0.84
√

(−x3x6 + x4 − x5 +
√

((x2 + log(x3 + exp(x2)))/(x2 − x4)))
Vars6-20 6 (x1 − 0.97x1/(x5 − x6(x(

13/2)x4 + x6))− x2 + x3 + sin(x2
1)/x1)2

Vars6-21 6 x1 + x3 + (x1 + sin(−3.47x2 log(x6)/x5 + x4 + 25.56 exp(x2
5)/x2)2) sin(x2)

Vars6-22 6 x1 + (x4 + sin(−0.22(x3 − x4 + 1.0)) cos(x6)) cos(x2 + 2.27x5)
Vars6-23 6 x1 + x4 + log(x2

1 + x1(−x6 + 1.88
√

(0.71x1 + x2 + 0.28(x3 − x4/x5))))
Vars6-24 6 −0.59(1.42(0.24x2 +√x3/(x6

√
(−x4 + x5)))(1/4) + sin(x1))/x6

Vars6-25 6 x1 − x2
2 − x3 + x5 cos(x3) + x5 + x6 − 2.19

√
(−x3 − 0.44/x4)

program under a limited budget. Due to budgetary constraints, we were only able to test

the datasets for the noiseless settings. For the Eureqa method, the fitness measure function

is negative RMSE. We generated large datasets of size 105 in training each benchmark.

DSR, PQT, GPMeld These algorithms are evaluated based on an implementation in7. For

every ground-truth expression, we generate a dataset of sizes 105 training samples. Then we

execute all these baselines on the dataset with the configurations listed in Table E.6.
7↑https://github.com/brendenpetersen/deep-symbolic-optimization

276

https://github.com/brendenpetersen/deep-symbolic-optimization

Table E.4. Detailed equations in Feynman datasets (n = 4). n stands for the
number of maximum variables.

Feynman (n = 4)
Equation ID n Expression
I.8.14 4

√
(x0 − x1)2 + (x2 − x3)2

I.13.4 4 0.5x0(x2
1 + x2

2 + x2
3)

I.13.12 4 6.6743e− 11x0x1(−1/x3 + 1/x2)
I.18.4 4 (x0x1 + x2x3)/(x0 + x2)
I.18.16 4 x0x1x2 sin(x3)
I.24.6 4 0.25x0x

2
3(x2

1 + x2
2)

I.29.16 4
√

x2
0 + 2x0x1 cos(x2 − x3) + x2

1
I.32.17 4 0.0035πx2

0x
2
1x

4
2/(x2

2 − x2
3)2

I.34.8 4 x0x1x2/x3
I.40.1 4 x0 exp(−7.10292768111229e + 23x1x2/x3)
I.43.16 4 x0x1x2/x3
I.44.4 4 1.38e− 23x0x1 log(x2/x3)
I.50.26 4 x0(x3 cos(x1x2)2 + cos(x1x2))
II.11.20 4 2.41e + 22x0x

2
1x2/x3

II.34.11 4 x0x1x2/(2x3)
II.35.18 4 x0/(exp(7.24e + 22x1x2/x3) + exp(−7.24e + 22x1x2/x3))
II.35.21 4 x0x1 tanh(7.24e + 22x1x2/x3)
II.38.3 4 x0x1x2/x3

III.10.19 4 x0

√
x2

1 + x2
2 + x2

3
III.14.14 4 x0(exp(7.24e + 22x1x2/x3)− 1)
III.21.20 4 −x0x1x2/x3
BONUS.1 4 3.32e− 57x2

0x
2
1/(x2

2 sin(x3/2)4)
BONUS.3 4 x0(1− x2

1)/(x1 cos(x2 − x3) + 1)
BONUS.11 4 4x0 sin(x1/2)2 sin(x2x3/2)2/(x2

1 sin(x3/2)2)
BONUS.19 4 −1872855580.36049(8.07e + 33x0/x2

1 + 8.98e + 16x2
2(1− 2x3))/π

The official implementation of Symbolic Physics Learner (SPL) [240]8 does not support

open constants. Thus SPL is not considered in this research.

For the four baselines (i.e., PQT, VPG, DSR, GPMeld), the reward function is INV-

NRMSE, which is defined as 1
1+NRMSE .

8↑https://github.com/isds-neu/SymbolicPhysicsLearner

277

https://github.com/isds-neu/SymbolicPhysicsLearner

Table E.5. Detailed equations in Feynman datasets (n = 5). n stands for the
number of maximum variables.

Feynman (n = 5)
Equation ID n Expression
I.12.11 5 x0(x1 + x2x3 sin(x4))
II.2.42 5 x0x3(x1 − x2)/x4

II.6.15a 5 84707476846.623x0x1

√
(x2

3 + x2
4)/(πx5

2)
II.11.3 5 x0x1/(x2(x2

3 − x2
4))

II.11.17 5 x0(7.24e + 22x1x2 cos(x3)/x4 + 1)
II.36.38 5 7.24e + 22x0x1/x2 + 9.10e + 16x0x3x4/x2
III.9.52 5 1.21e + 34πx0x1 sin(x2(x3 − x4)/2)2/(x2(x3 − x4)2)
bonus.4 5

√
2
√

(x1 − x2 − x2
3/(2x0x2

4))/x0
bonus.12 5 x0(−x0x

3
2x4/(x2

2 − x2
4)2 + 4pix1x3x4)/(4πx1x

2
2)

bonus.13 5 x1/(4πx0

√
x2

2 − 2x2x3 cos(x4) + x2
3)

bonus.14 5 x0(−x2 + x3
3(x4 − 1)/(x2

2(x4 + 2))) cos(x1)
bonus.16 5 x1x4 + 8.98e + 16

√
x2

3 + 1.11e− 17(x0 − x1x2)2

E.3.4 Optimizers

We consider several optimizers CG [301] Nelder-Mead [302], BFGS [243], Basin Hop-

ping [244], SHGO [303], Dual Annealing [304]. The list of local and global optimizers shown

in Figure E.6 are from Scipy library9.

E.3.5 Hyper-parameter Configuration

We list the major hyper-parameter setting for all the algorithms in Table E.6. Note

that if we use the default parameter settings, the GPMeld algorithm takes more than 1

day to train on one dataset. Because of such slow performance, we cut the number of

genetic programming generations in GPMeld by half to ensure fair comparisons with other

approaches.

9↑https://docs.scipy.org/doc/scipy/reference/optimize.html

278

https://docs.scipy.org/doc/scipy/reference/optimize.html

Table E.6. Major hyper-parameters settings for all the algorithms considered
in the experiment.

Racing-CVGP GP DSR PQT GPMeld Eureqa
Reward function NegMSE NegMSE InvNRMSE InvNRMSE InvNRMSE NegRMSE
Training set size 25, 600 25, 600 50, 000 50, 000 50, 000 50, 000
Testing set size 256 25, 600 256 256 256 256

Batch size 256 256 1024 1024 1024 N/A
#CPUs 1 1 4 4 4 1

ε-risk-seeking policy N/A 0.02 0.02 0.02 N/A N/A
#generations 100 100 N/A N/A 60 10,000

#Hall of fame 10 10 25 25 25 N/A
Mutation Prob. 0.5 0.5 0.5 N/A N/A N/A

Mating Prob 0.5 0.5 0.5 N/A N/A N/A
training time (hours) ∼0.5 ∼0.5 ∼0.5 ∼0.5 ∼6 ∼0.5

10−1 2× 10−1 3× 10−1 4× 10−1 6× 10−1

Normalized Mean Square Error

π1
π2
π3
π4
π5
π6
π7
π8
π9
π10
π11
π12
π13
π14
π15
π16
π17
π18
π19
π20
π21
π22
π23
π24

E
xp

er
im

en
tS

ch
ed

ul
es

10−1 100

Normalized Mean Square Error

π1
π2
π3
π4
π5
π6
π7
π8
π9
π10
π11
π12
π13
π14
π15
π16
π17
π18
π19
π20
π21
π22
π23
π24

E
xp

er
im

en
tS

ch
ed

ul
es

2× 10−1 3× 10−1 4× 10−1 6× 10−1

Normalized Mean Square Error

π1
π2
π3
π4
π5
π6
π7
π8
π9
π10
π11
π12
π13
π14
π15
π16
π17
π18
π19
π20
π21
π22
π23
π24

E
xp

er
im

en
tS

ch
ed

ul
es

10−2 10−1

Normalized Mean Square Error

π1
π2
π3
π4
π5
π6
π7
π8
π9
π10
π11
π12
π13
π14
π15
π16
π17
π18
π19
π20
π21
π22
π23
π24

E
xp

er
im

en
tS

ch
ed

ul
es

Figure E.2. Impact of experiment schedules (noted as π) on learning perfor-
mance of control variable genetic programming, on the Trigonometric (4, 4, 6)
with operator set {+,−,×,÷, sin, cos} dataset. For the discovery of 10 dif-
ferent expressions with 4 variables, there always exists a better experiment
schedule than the default one (i.e., π1), in terms of normalized mean square
error.

279

10−1

Normalized Mean Square Error

π1
π2
π3
π4
π5
π6
π7
π8
π9
π10
π11
π12
π13
π14
π15
π16
π17
π18
π19
π20
π21
π22
π23
π24

E
xp

er
im

en
tS

ch
ed

ul
es

10−1

Normalized Mean Square Error

π1
π2
π3
π4
π5
π6
π7
π8
π9
π10
π11
π12
π13
π14
π15
π16
π17
π18
π19
π20
π21
π22
π23
π24

E
xp

er
im

en
tS

ch
ed

ul
es

10−2 10−1 100

Normalized Mean Square Error

π1
π2
π3
π4
π5
π6
π7
π8
π9
π10
π11
π12
π13
π14
π15
π16
π17
π18
π19
π20
π21
π22
π23
π24

E
xp

er
im

en
tS

ch
ed

ul
es

10−2 10−1 100

Normalized Mean Square Error

π1
π2
π3
π4
π5
π6
π7
π8
π9
π10
π11
π12
π13
π14
π15
π16
π17
π18
π19
π20
π21
π22
π23
π24

E
xp

er
im

en
tS

ch
ed

ul
es

10−16× 10−2 2× 10−1 3× 10−14× 10−1

Normalized Mean Square Error

π1
π2
π3
π4
π5
π6
π7
π8
π9
π10
π11
π12
π13
π14
π15
π16
π17
π18
π19
π20
π21
π22
π23
π24

E
xp

er
im

en
tS

ch
ed

ul
es

10−3 10−2 10−1 100

Normalized Mean Square Error

π1
π2
π3
π4
π5
π6
π7
π8
π9
π10
π11
π12
π13
π14
π15
π16
π17
π18
π19
π20
π21
π22
π23
π24

E
xp

er
im

en
tS

ch
ed

ul
es

Figure E.3. (Continued) Impact of experiment schedules (noted as π) on
learning performance of control variable genetic programming. For the dis-
covery of expression with 4 variables, there always exists a better experiment
schedule than the default one (i.e., π1), in terms of normalized mean square
error.

E.4 Extra Experimental Analysis

E.4.1 Impact of Experiment Schedules: See Figure E.2,E.3

E.4.2 Empirical Running Time: See Figure E.4

E.4.3 Impact of Evaluation Metrics: See Figure E.5

280

102 104

Time Usage (Mins)

Racing-CVGP(ours)

CVGP

GP

GPMeld

PQT

DSR

VPG

sin cos (4, 4, 6)

102 104

Time Usage (Mins)

sin cos (5, 5, 5)

102 104

Time Usage (Mins)

sin cos (5, 5, 5)

102 104

Time Usage (Mins)

sin cos (5, 5, 5)

Figure E.4. On Trigonometric datasets, quartiles of the total running time
of all the methods. Our Racing-CVGP method takes less time than CVGP by
early stopping those unfavorable experiment schedules.

100 101

MSE

Racing-CVGP(ours)

CVGP

GP

VPG

PQT

DSR

GPMeld

sin, cos (4, 4, 6)

100 101

NMSE

sin, cos (4, 4, 6)

10−1 100

RMSE

sin, cos (4, 4, 6)

10−1 100

NRMSE

sin, cos (4, 4, 6)

Figure E.5. On selected Trigonometric datasets, MSE, NMSE, RMSE, and
NRMSE evaluation metrics of the expressions found by different algorithms.

E.4.4 Impact of Optimizers

Here we study the impact of using global and local optimizers over those non-convex

expressions. With the introduction of control variable experiments, fitting the open constants

in the expressions is solving more and more non-convex optimization problems.

For those expressions in the populations, an optimizer might find a set of open constants

for a structurally correct expression with large NMSE errors, resulting in a low ranking in

the whole population. Such structurally correct expressions will not be included after several

rounds of genetic operations.

We summarize the experimental result in Figure E.6. In general, the list of global optimiz-

ers (SHGO, Direct, Basin-Hopping, and Dual-Annealing) fits better for the open constants

281

10−3 10−2 10−1 100

NMSE

Basinhopping

SHGO

Dual Annealing

Nelder Mead

BFGS

CG

sin cos (4, 4, 6)

105

Time Usage (Mins)

Basinhopping

SHGO

Dual Annealing

Nelder Mead

BFGS

CG

sin cos (4, 4, 6)

Figure E.6. Impact of optimizers on finding the values of open constants for
non-convex expressions. Over 10 randomly generated expressions involving 4
variables, SHGO can find better solutions (in terms of NMSE metric) than
local optimizers (including Nelder-Mead, BFGS, CG), while the time taken by
SHGO is higher than local optimizers.

than the list of local optimizers but they take significantly more CPU resources and time for

computations.

282

F. Appendix for Chapter 8

F.1 Direct Integration of Vertical Symbolic Regression with Deep Policy Gra-
dient

Here we provide two possible pipelines for integrating the idea of vertical symbolic re-

gression with deep reinforcement learning, using the binary tree representation of symbolic

expressions. We will show the limitations of each integration. The fundamental cause is the

tree representation of expression.

Tree Representation for Symbolic Expression. A symbolic expression can be rep-

resented as an expression tree, where variables and constants correspond to leaves, and

operators correspond to the inner nodes of the tree. An inner node can have one or multiple

child nodes depending on the arity of the associated operator. For example, a node repre-

senting the addition operation (+) has 2 children, whereas a node representing trigonometric

functions like cos operation has a single child node. The preorder traversal sequence of the

expression tree uniquely determines a symbolic expression. Figure F.1(a) presents an exam-

ple of such an expression tree of the expression x1×C1−C2. Its preorder traversal sequence

is (−,×, x1, C1, C2). This traversal sequence uniquely determines a symbolic expression.

Genetic Programming for Symbolic Regression. Genetic Programming (GP) [305] has

been a popular algorithm for symbolic regression. The core idea of GP is to maintain a pool of

expressions represented as expression trees, and iteratively improve this pool according to the

fitness score. The fitness score of a candidate expression measures how well the expression fits

a given dataset. Each generation of GP consists of 3 basic operations – selection, mutation

and crossover. In the selection step, candidate expressions with the highest fitness scores are

retained in the pool, while those with the lowest fitness scores are discarded. In the mutation

step, sub-expressions of some randomly selected candidate expressions are altered with some

probability. In the crossover step, the sub-expressions of different candidate expressions are

interchanged with some probability. In implementation, mutation changes a node of the

expression tree while crossover is the exchange of subtrees between a pair of trees. This

whole process repeats until we reach the final generation. We obtain a pool of expressions

with high fitness scores, i.e., expressions that fit the data well, as our final solutions.

283

(d) no control(b) control x3, x4 (c) control x4(a) control x2, x3, x4

Best

discovered

expression

Input:

Output:
Available
tokens

,

,

,

,

,

,

+
−
×
÷

const
x1
x2

RNN RNN RNN

−

Categorial

distribution

×

RNN

C2

RNN

x1

− ×

C1

Empty input

× ×

x1 x3 x2 x4

−

×

x1

−

C1

C2 ×

x1

−

C3 C4

×

x2 C5

× ×

x1 x3 x2

−

(e) expand the summary constants in the second round.C1, C2

RNN RNN

x2

RNN

C2

× C4

x2×

Forced output Sampled output

RNN

Forced output
C3

Sampled output

x1 C1 C1

Figure F.1. Constraint-based integration of deep reinforcement learning with
vertical symbolic regression. The constraints enforce the output of RNN out-
put the given token at each step. It has limitations in passing the gradient
to the parameters of RNN and also requires heavy engineering of different
constraints. (a) Initially, the RNN to learn a reduced form equation with
variables x2, x3, x4 controlled. The RNN learns to sample the best preorder
traversal of the reduced form expression tree from the available tokens. No
constraints are applied in the first round. (b, e) Given the best-predicted
expression φ1 represented as (−,×, x1, C1, C2) at the first round, the RNN is
used to predict an expression with control variables x3, x4. For the first four
steps, the constraints are applied to mask out other tokens in the output, to
enforce that the output must be −,×, x1, C1. Since C1 is a summary constant,
the RNN samples a sub-expression with no constraints starting at the 5th step,
which is C3. In 6-th step, with the termination of the prior sub-expression,
constraints are applied to enforce the RNN outputs C2. Starting at the 7th
step, we sample a subexpression x2 × C4. (c,d) The rest of the steps in the
pipeline of vertical symbolic regression using expression tree representation.

Genetic Programming for Vertical Symbolic Regression (VSR-GP). VSR-GP uses

GP as a sub-routine to predict the best expression at every round. At the end of every round,

for an expression in the pool with close-to-zero MSE metric, VSR-GP marks the inner nodes

for mathematical operators and leaf nodes for standalone constants and variables as non-

mutable. Only the leaf nodes for summary constants as marked as mutable, because summary

constants are those sub-expressions containing controlled variables. During mutation and

crossover, VSR-GP only alters the mutable nodes of the candidate expression trees. In

comparison, all the nodes in the expression tree are mutable in classic GP.

284

Deep Policy Gradient for Symbolic Regression The deep reinforcement learning-based

approaches predict the expression by sampling the pre-order traversal sequence of the expres-

sion using RNN. The parameters of the RNN are trained through a policy gradient-based

objective. The original work [180] proposes a relatively complex RL-based symbolic regres-

sion framework, where those extra modules are omitted in this part to ensure the main idea

is clearly delivered. In this work, the policy gradient and the RL learner is used interchange-

ably, which refers to the sample algorithm.

In the following, we present two possible integrations for the vertical discovery path with

policy gradient-based symbolic regressor, based on the expression tree representation.

F.1.1 Constraint-based Integration

To force the predicted expression at the current round to be close to the previously

predicted expression, the first idea is to apply constraints to limit the output vocabulary at

every step of sampling tokens.

Take Figure F.1 as an example. Given the best-predicted expression φ1 represented as

pre-order traversal sequence (−,×, x1, C1, C2) at the first round, we want to use the RNN

to predict a new expression φ that:

1. has close-to-zero MSE value on the data with control variables x3, x4,

2. similar to φ1 under controlled variables x2, x3, x4.

It could be achieved by forcing the RNN to predict the subtract token “−” at the first step,

where the rest tokens are masked out by the designed constraint. Similarly, we force the

RNN to predict the rest of two tokens ×, const with the designed constraints. Since we

know the 4-th step output is a summary constant, we would have no constraint at 5th step

and sample a token from the categorical distribution over all tokens. In the 6th step, the

constraint is applied to force the RNN to output C2, because the previous sub-expression

has been completed. This constraint-based approach will force the sampled expression, like

φ2 = x1 × C3 − x2 × x4, to be close to the best expression φ1 of the prior round.

The limitations of constraint-based integration are:

285

(d) no control(b) control x3, x4 (c) control x4(a) control x2, x3, x4

Best

discovered

expression

First layer
of RNN

Output:
Available

tokens

,

,

,

,

,

,

+
−
×
÷

const
x1
x2

RNN RNN RNNRNN

− x1× C1

× ×

x1 x3 x2 x4

−

×

x1

−

C1

C2 ×

x1

−

C3 C4

×

x2 C5

× ×

x1 x3 x2

−

(e) expand the summary constants in the second round.C1, C2

RNN RNN

x2

RNN

× C4

x2×

RNN

C2

RNN

C2

Second
layer of
RNN

Input:

Figure F.2. Concatenation-based integration of deep reinforcement learning
with vertical symbolic regression. Multiple layers of RNN are concatenated
together to implement the vertical symbolic regression. The limitation is we
need to store all the parameters of previously trained RNN, leading to a joint
model with massive memory consumption. (a,b,c,d) The pipeline of vertical
symbolic regression using expression tree representation. (e) The first layer
takes the input of the best-predicted expression φ, and the second layer uses
the hidden vectors of the 4-th step and 5-th step of the first layer, as input to
predict two separated sequence C3 and ×, x2, C4. The parameters of the first
layer are frozen while the parameters of the second layer are trained.

1. heavy engineering of designing the constraints and checking if the sub-expression has

been completed. In Figure F.1(e), every step of constraints is different from each

others.

2. Gradient computation issue. Only when the first sub-expression is done can we then

apply constraints to enforce the RNN to output C2. This step can be implemented with

various if-then checking which does not have a properly defined gradient. It causes the

gradient computation of the loss function to the parameters of RNN.

F.1.2 Concatenation-based Integration

The second possible idea is concatenating multiple layers of RNNs. The first layer of

RNN is the trained RNN at the 1st round. We use the first layer of the RNN to take in the

286

best sequence of the first round. When we read in a summary constant, we use the updated

hidden vector of the first layer as the initial vector of the second layer RNN.

Take Figure F.2 as an example. The first layer RNN takes the sequence (−,×, const, x1, const).

Because the 4th and 5th step input of the first layer is summary constant type, we use the

4th and 5th step output vectors to initialize the hidden state vector of the second layer RNN.

The second layer of RNN predicts two separated sub-expressions: const and ×, x2, const.

The whole sequence corresponds to the sampled expression φ2 from the concatenated RNNs.

The parameters inside the second layer RNN need to be trained by the policy gradient algo-

rithm. Similarly, at the last round, we re-use pre-trained n− 1 layers of RNN to take in the

best-predicted expression φn−1 and use one more layer to expand the summary constants in

expression φn−1. The whole predicted sequence of tokens is the final predicted expression φn.

Notice that the parameters of the prior layers of RNN can be frozen to reduce the number

of parameters for training.

The main limitation of this idea is that: (1) we need to store all the trained RNNs. This

does not scale up to many input variable cases. At the last round, we will have n− 1 frozen

layers of RNN and one trainable layer of RNN. (2) Due to multiple layers of RNNs and the

sequence of input becoming longer and longer, then the training speed of the whole model

will be slower and slower with fewer and fewer controlled variables.

F.2 Extended Explanation of Vsr-Dpg method

Data-availability Assumption. A crucial assumption behind the success of vertical sym-

bolic regression is the availability of a DataOracle that returns a (noisy) observation of the

dependent output with input variables in xc controlled. Such a data oracle represents con-

ducting control variable experiments in the real world, which can be expensive. This differs

from the horizontal symbolic regression, where a dataset is obtained prior to learning with

no variable controlled [197].

The vertical discovery path is to build algorithms that mimic human scientific discovery,

which has achieved tremendous success in early works [189–191]. Recent work [275–277, 286]

also pointed out the importance of having a data oracle that can actively query data points,

287

rather than learning from a fixed dataset. In cases where it is difficult to obtain such a data

oracle, Keren et al. proposed the use of deep neural networks to learn a data generator for

the given set of controlled variables.

F.2.1 Sequential Decision Making Formulation

We consider an undiscounted MDP with a finite horizon. The state space S is the set

of all possible sequences of rules with maximum steps. The action space A is the set of

grammar rules. The t-th step state st is the sequence of sampled rules before the current

step t, i.e., st := (τ1, . . . , τt). The action at is the sampled single rule, at := τt+1.

Objective and its Gradient. The loss function of Vsr-Dpg is informed by the REIN-

FORCE algorithm [239], which is based on the log-derivative property:

∇θpθ(τ) = pθ(τ)∇θ log pθ(τ),

where pθ(τ) ∈ (0, 1) represents a probability distribution over input τ with parameters θ and

notation ∇θ is the partial derivative with respect to θ. In our formulation, pθ(τ) denotes the

probability of sampling a sequence of grammar rules τ and reward(τ) = 1/(1 + NMSE(φ)).

Here φ is the corresponding expression constructed from the rules τ following the procedure

in Section 8.3.1. The probability pθ(τ) is modeled by the RNN modules. The learning

objective is to maximize the expected reward of the sampled expressions from the RNN:

arg max
θ

Eτ∼pθ(τ)[reward(τ)]

Based on the REINFORCE algorithm, the gradient of the objective can be expanded as:

∇θEτ∼pθ(τ)[reward(τ)] = ∇θ

∑
τ∈Σ

reward(τ)pθ(τ)

=
∑
τ∈Σ

reward(τ)∇θpθ(τ)

=
∑
τ∈Σ

reward(τ)pθ(τ)∇θ log pθ(τ)

= Eτ∼pθ(τ) [reward(τ)∇θ log pθ(τ)]

288

Algorithm 9: Vertical Symbolic Regression via Deep Policy Gradient.
Input: #input variables n; Mathematical Operators Op; Draw data with

controlled variables DataOracle
Output: The best-predicted expression

1 xc ← {x1, . . . , xn}; // controlled variables
2 S = A ; // start symbol
3 Q ← ∅ ; // best expressions across all rounds
4 Dglobal ← DataOracle(∅) ; // data oracle with no control variable
5 draw a batch of data Tg ← GenData(Dglobal);
6 for xi ∈ {x1, . . . , xn} do
7 set controlled variables xc ← xc \ {xi};
8 construct data oracle Do ← DataOracle(xc);
9 obtain the best predicted equation φ← Dpg(S, Do, Op ∪ {const, xi});

10 for k = 1 to K do
11 //multiple control variable trails;
12 draw a batch of data Tk ← GenData(Do);
13 fitness score ok, fitted constant values ck, fitted expression

φk ← Optimize(φ, Tk);
14 decide summary or standalone type for every constant in φ using {(ok, ck)}K

k=1;
15 construct start symbol S for next round from φ;
16 fitness score og, fitted constant values cg, fitted expression φg ← Optimize(φ, Tg);
17 saving 〈og, cg, φg〉 into Q.
18 return the equation with best fitness score in Q;
19 Function DPG:

Input: start symbol S, data oracle Do, allowed operators and variables Op

20 initialize Q =[]. construct grammar rules from Op. set input and output
vocabulary for RNN with the grammar rules. sets the initial input of RNN as
the start symbol S. for t← 1 to #epochs do

21 //In Section 8.3.2;
22 sample N sequences of grammar rules {τi}N

i=1 from RNN;
23 //In Section 8.3.1;
24 construct expressions {φi}N

i=1 from grammar rules {τi}N
i=1;

25 for i = 1 to N do
26 draw data Ti ← GenData(Do) ; // optimize open constants
27 fitness score oi, fitted constants ci, fitted expression ← Optimize(φ, Ti);
28 compute reward(φi) using fitness score oi;
29 saving 〈oi, ci, φi〉 into Q;
30 compute estimated base b = ∑N

i=1 reward(τ i);
31 compute the estimated policy gradient

gt ← 1
N

∑N
i=1(reward(τ i)− b)∇θ log pθ(τ i);

32 update parameters of RNN by gradient descent θt ← θt−1 + αgt.
33 return the expression in Q with best fitness score.

289

where Σ represents all possible sequences of grammar rules sampled from the RNN. The

above expectation can be estimated by computing the empirical average over samples drawn

from the distribution pθ(τ). We first sample several times from the RNN module and obtain

N sequences (τ 1, . . . , τN), an unbiased estimation of the gradient of the objective is computed

as:

∇θJ(θ) ≈ 1
N

N∑
i=1

reward(τ i)∇θ log pθ(τ i)

In practice, the above computation has a high variance. To reduce variance, it is common to

subtract a baseline function b from the reward. In this study, we choose the baseline function

as the average of the reward of the current sampled batch expressions. Thus we have:

∇θJ(θ) ≈ 1
N

N∑
i=1

(reward(τ i)− b)∇θ log pθ(τ i),

where b = ∑N
i=1 reward(τ i).

Based on the description of the execution pipeline of the proposed Vsr-Dpg, we sum-

marize every step in Algorithm 9.

F.2.2 Implementation of VSR-DPG

Neural Network Configuration. In the experiments, we use Long short-term memory

(LSTM) as the RNN layer and we configure the number of RNN layers as 3. The dimension

of the input embedding layer and the hidden vector in LSTM is configured as 512. We use

the Adam optimizer as the gradient descent algorithm with a learning rate of 0.009. The

learning epoch for each round is configured 30. The maximum sequence of grammar rules is

fixed to be 20. The number of expressions sampled from the RNN is set as 1024.

Coefficient Fitting. Afterward, we decide the optimal value of open constants in each

expression. Assume the expression has m open constants. We first sample a batch of data

D with the controlled variable xc and then use a gradient-based optimizer to fit those open

constants, by minimizing the objective:

min
c∈Rm

1
N

N∑
i=1

`(φ(xi, c), yi)

290

We then obtain the fitness score o, the fitted constants c, and the fitted equation φ. When

fitting the values of open constants in each expression, we sample a batch of data with batch

size 1024 from the data Oracle. The open constants in the expressions are fitted on the data

using the BFGS optimizer1. We use a multi-processor library to fit multiple expressions

using 8 CPU cores in parallel. This greatly reduced the total training time.

An expression containing placeholder symbol A or containing more than 20 open con-

stants is not evaluated on the data, the fitness score of it is −∞. In terms of the reward

function in the policy gradient objective, we use reward(τ) = 1
1+NMSE(φ) . The normalized

mean-squared error metric is further defined in Equation F.1.

The deep network part is implemented using the most recent version of TensorFlow, the

expression evaluation is based on the Sympy library, and the step for fitting open constants

in expression with the dataset uses the Scipy library.

F.3 Experiment Settings

F.3.1 Evaluation Metrics

The goodness-of-fit indicates how well the learning algorithms perform in discovering

unknown symbolic expressions. Given a testing dataset Dtest = {(xi, yi)}n
i=1 generated from

the ground-truth expression, we measure the goodness-of-fit of a predicted expression φ, by

evaluating the mean-squared-error (MSE) and normalized-mean-squared-error (NMSE):

MSE = 1
n

n∑
i=1

(yi − φ(xi))2,

NMSE =
1
n

∑n
i=1(yi − φ(xi))2

σ2
y

,

(F.1)

The empirical variance σy =
√

1
n

∑n
i=1

(
yi − 1

n

∑n
i=1 yi

)2
. We use the NMSE as the main

criterion for comparison in the experiments and present the results on the remaining metrics

in the case studies. The main reason is that the NMSE is less impacted by the output
1↑https://docs.scipy.org/doc/scipy/reference/optimize.minimize-bfgs.html

291

https://docs.scipy.org/doc/scipy/reference/optimize.minimize-bfgs.html

range. The output ranges of expression are dramatically different from each other, making

it difficult to present results uniformly if we use other metrics.

Prior work [180] further proposed coefficient of determination R2-based Accuracy over a

group of expressions in the dataset, as a statistical measure of whether the best-predicted

expression is almost close to the ground-truth expression. An R2 of 1 indicates that the

regression predictions perfectly fit the data [299]. Given a threshold value thresh (we use

thresh = 0.9999), for a dataset containing fitting tasks of N expressions, the algorithm

finds a group of best expressions [φ1, . . . , φN] correspondingly. The R2-based accuracy is

computed as follows:

R2- based Accuracy = 1
n

n∑
i=1

1(R2(φi) ≥ thresh),

where R2(φi) = 1 −
1
n

∑n

i=1(yi−φ(xi))2

σ2
y

and 1(·) is an indicator function that outputs 1 when

the R2(φi) exceeds the threshold τ .

F.3.2 Symbolic Regression on Algebraic Equations

Baselines. We consider a list of current popular baselines based on genetic programming2:

• Genetic Programming (GP) maintains a population of candidate symbolic expressions,

in which this population evolves between generations. In each generation, candidate

expressions undergo mutation and crossover with a pre-configured probability value.

Then in the selection step, expressions with the highest fitness scores (measured by

the difference between the ground truth and candidate expression evaluation) are se-

lected as the candidates for the next generation, together with a few randomly chosen

expressions, to maintain diversity. After several generations, expressions with high

fitness scores, i.e., those expressions that fit the data well survive in the pool of can-

didate solutions. The best expressions in all generations are recorded as hall-of-fame

solutions.
2↑https://github.com/jiangnanhugo/cvgp

292

https://github.com/jiangnanhugo/cvgp

• Vertical symbolic regression with genetic programming (VSR-GP) builds on top of

GP. It discovers the ground-truth expression following the vertical discovery path. In

the t-th round, it controls variables xt+1, . . . , xn as constant, and only discovers the

expression involving the rest variables x1, . . . , xn.

Eureqa [237] is the current best commercial software based on evolutionary search algo-

rithms. Eureqa works by uploading the dataset D and the set of operators as a configura-

tion file to its commercial server. This algorithm is currently maintained by the DataRobot

webiste3. Computation is performed on its commercial server and only the discovered ex-

pression will be returned after several hours. We use the provided Python API to send

the training dataset to the DataRobot website and collect the predicted expression from

the server-returned result. For the Eureqa method, the fitness measure function is negative

RMSE. We generated large datasets of size 105 in training each dataset.

A line of methods based on reinforcement learning4:

• Deep Symbolic Regression (DSR) [180] uses a combination of recurrent neural network

(RNN) and reinforcement learning for symbolic regression. The RNN generates possi-

ble candidate expressions, and is trained with a risk-seeking policy gradient objective

to generate better expressions.

• Priority queue training (PQT) [238] also uses the RNN similar to DSR for generating

candidate expressions. However, the RNN is trained with a supervised learning objec-

tive over a data batch sampled from a maximum reward priority queue, focusing on

optimizing the best-predicted expression.

• Vanilla Policy Gradient (VPG) [239] is similar to DSR method for the RNN part. The

difference is that VPG uses the classic REINFORCE method for computing the policy

gradient objective.

• Neural-Guided Genetic Programming Population Seeding (GPMeld) [181] uses the

RNN to generate candidate expressions, and these candidate expressions are improved

by a genetic programming (GP) algorithm.
3↑https://docs.datarobot.com/en/docs/modeling/analyze-models/describe/eureqa.html
4↑https://github.com/dso-org/deep-symbolic-optimization

293

https://docs.datarobot.com/en/docs/modeling/analyze-models/describe/eureqa.html
https://github.com/dso-org/deep-symbolic-optimization

(a) Genetic Programming-based methods.
VSR-GP GP Eureqa

Fitness function NegMSE NegMSE NegRMSE
Testing set size 256 256 50, 000

#CPUs for training 1 1 N/A

#genetic generations 200 200 10,000
Mutation Probability 0.8 0.8
Crossover Probability 0.8 0.8

(b) Monte Carlo Tree Search-based methods.
MCTS

Fitness function NegMSE
Testing set size 256

#CPUs for training 1

(c) Deep reinforcement learning-based methods.
DSR PQT GPMeld

Reward function 1/(1+NRMSE)
Training set size 50, 000
Testing set size 256

Batch size 1024
#CPUs for training 8
ε-risk-seeking policy 0.02 N/A N/A

#genetic generations N/A N/A 60
#Hall of fame N/A N/A 25

Mutation Probability N/A N/A 0.5
Crossover Probability N/A N/A 0.5

Table F.1. Major hyper-parameters settings for all the algorithms considered
in the experiment.

Symbolic Physics Learner (SPL) is a heuristic search algorithm based on Monte Carlo

Tree Search for finding optimal sequences of production rules using context-free gram-

mars [240, 258]5. It employs Monte Carlo simulations to explore the search space of all

the production rules and determine the value of each node in the search tree. SPL consists

of four steps in each iteration: 1) Selection. Starting at a root node, recursively select the

optimal child (i.e., one of the production rules) until reaching an expandable node or a leaf
5↑https://github.com/isds-neu/SymbolicPhysicsLearner

294

https://github.com/isds-neu/SymbolicPhysicsLearner

node. 2) Expansion. If the expandable node is not the terminal, create one or more of its

child nodes to expand the search tree. 3) Simulation. Run a simulation from the new node

until achieving the result. 4) Backpropagation. Update the node sequence from the new

node to the root node with the simulated result. To balance the selection of optimal child

node(s) by exploiting known rewards (exploitation) or expanding a new node to explore

potential rewards exploration, the upper confidence bound (UCB) is often used.

End to End Transformer for symbolic regression (E2ETransformer) [208]6. They propose

to use a deep transformer to pre-train on a large set of randomly generated expressions. We

load the shared pre-trained model. We provide the given dataset and the E2ETransformer

infers 10 best expressions. We choose to report the expression with the best NMSE scores.

We list the major hyper-parameter settings for all the algorithms in Table F.1. Note

that if we use the default parameter settings, the GPMeld algorithm takes more than 1

day to train on one dataset. Because of such slow performance, we cut the number of

genetic programming generations in GPMeld by half to ensure fair comparisons with other

approaches.

Dataset for Algebraic Equations The dataset is available at the code repository with

the folder name:

data/algebraic_equations/equations_trigonometric.

The expressions used for comparison have the same mathematical operators Op = {+,−,×, sin, cos}.

One configuration (2, 1, 1) is shown in Table F.2.

For the extended analysis, where we consider many more input variables, they are avail-

able in the folder with the name:

data/algebraic_equations/large_scale_n

where the value of n is the number of total variables in, which can be 10, 20, 30, 40, 50.

The original expression is: −0.4156x0x1−0.1399x2 cos(x1)+0.0438x2+0.9508x3 sin(x1)+

0.2319x3−0.6808x4 cos(x3)−0.4468x4+0.0585 sin(x0)+0.6224 cos(x1)−0.8638 cos(x2) cos(x3)+

0.959. We extend this expression by choosing 5 variables from the total n = 10 variables and
6↑https://github.com/facebookresearch/symbolicregression

295

https://github.com/facebookresearch/symbolicregression

Equation ID Exact Expression
prog-0 −0.167 sin(x0) cos(x1) + 0.4467 cos(x0)− 0.2736
prog-1 0.6738x0 − 0.5057 sin(x0) sin(x1) + 0.8987
prog-2 −0.5784x0x1 + 0.556 cos(x1) + 0.8266
prog-3 0.0882x0 − 0.7944 sin(x0) sin(x1) + 0.4847
prog-4 −0.7262 sin(x1) cos(x0)− 0.006 cos(x1)− 0.9218
prog-5 0.189x0x1 − 0.7125 cos(x1)− 0.4207
prog-6 0.2589x0 sin(x1) + 0.1977x1 − 0.7504
prog-7 −0.2729x0 sin(x1)− 0.7014x1 + 0.3248
prog-8 −0.2582x0 − 0.8355x1 cos(x0)− 0.5898
prog-9 0.1052x0x1 + 0.0321x0 − 0.9554

Table F.2. 10 randomly drawn expressions with 2 variables, 1 single term,
and 1 cross term with operators {sin, cos, +,−,×}.

mapping the selected variables to the variables x0, . . . , x4. Here are 10 randomly generated

expressions:

φ1 =− 0.4156x3x9 − 0.1399x1 cos(x3) + 0.0438x1 + 0.9508x0 sin(x3) + 0.2319x0 − 0.6808x4 cos(x0)

− 0.4468x4 + 0.0585 sin(x9) + 0.6224 cos(x3)− 0.8638 cos(x0) cos(x1) + 0.959

φ2 =− 0.4156x0x5 − 0.1399x3 cos(x0) + 0.0438x3 + 0.9508x1 sin(x0) + 0.2319x1 − 0.6808x7 cos(x1)

− 0.4468x7 + 0.0585 sin(x5) + 0.6224 cos(x0)− 0.8638 cos(x1) cos(x3) + 0.959

φ3 =− 0.4156x5x8 − 0.1399x1 cos(x5) + 0.0438x1 + 0.9508x4 sin(x5) + 0.2319x4 − 0.6808x0 cos(x4)

− 0.4468x0 + 0.0585 sin(x8) + 0.6224 cos(x5)− 0.8638 cos(x1) cos(x4) + 0.959

φ3 =− 0.4156x2x6 − 0.1399x3 cos(x2) + 0.0438x3 + 0.9508x7 sin(x2) + 0.2319x7 − 0.6808x9 cos(x7)

− 0.4468x9 + 0.0585 sin(x6) + 0.6224 cos(x2)− 0.8638 cos(x3) cos(x7) + 0.959

φ4 =− 0.4156x3x7 − 0.1399x8 cos(x3) + 0.0438x8 + 0.9508x2 sin(x3) + 0.2319x2 − 0.6808x9 cos(x2)

− 0.4468x9 + 0.0585 sin(x7) + 0.6224 cos(x3)− 0.8638 cos(x2) cos(x8) + 0.959

φ5 =− 0.4156x1x3 − 0.1399x6 cos(x3) + 0.0438x6 + 0.9508x2 sin(x3) + 0.2319x2 − 0.6808x0 cos(x2)

− 0.4468x0 + 0.0585 sin(x1) + 0.6224 cos(x3)− 0.8638 cos(x2) cos(x6) + 0.959

φ6 =− 0.4156x4x5 − 0.1399x7 cos(x5) + 0.0438x7 + 0.9508x6 sin(x5) + 0.2319x6 − 0.6808x8 cos(x6)

− 0.4468x8 + 0.0585 sin(x4) + 0.6224 cos(x5)− 0.8638 cos(x6) cos(x7) + 0.959

296

φ7 =− 0.4156x3x8 − 0.1399x5 cos(x3) + 0.0438x5 + 0.9508x0 sin(x3) + 0.2319x0 − 0.6808x7 cos(x0)

− 0.4468x7 + 0.0585 sin(x8) + 0.6224 cos(x3)− 0.8638 cos(x0) cos(x5) + 0.959

φ8 =− 0.4156x0x3 − 0.1399x2 cos(x0) + 0.0438x2 + 0.9508x5 sin(x0) + 0.2319x5 − 0.6808x6 cos(x5)

− 0.4468x6 + 0.0585 sin(x3) + 0.6224 cos(x0)− 0.8638 cos(x2) cos(x5) + 0.959

φ9 =− 0.4156x0x5 − 0.1399x8 cos(x5) + 0.0438x8 + 0.9508x7 sin(x5) + 0.2319x7 − 0.6808x2 cos(x7)

− 0.4468x2 + 0.0585 sin(x0) + 0.6224 cos(x5)− 0.8638 cos(x7) cos(x8) + 0.959

The rest expressions are available in the data folder.

F.3.3 Extra Results

We show in Fig F.3 the full quartiles of the experiments.

10−13 10−9 10−5 10−1 103

NMSE

VSR-D
PG(ours)

VSR-G
P

GP

Eureq
a

SPL

VPG

PQT

DSR

GPMeld

sin, cos (4, 4, 6)

101 102 103 104

Time Usage (Mins)

VSR-D
PG

(ours)

VSR-G
P

GP

SPL

VPG

PQT

DSR

GPMeld

sin cos inv (2, 1, 1)

Figure F.3. Measurement of variability for the experiments. quantiles (25%,
50%, 75%) of (Left) Normalized MSE values of discovered equations and
(Right) execution time of the learning algorithm.

297

F.3.4 Symbolic Regression on Ordinary Differential Equations

The temporal evolution of the system is modeled by the time derivatives of the state

variables. Let x be the n-dimensional vector of state variables, and dx/dt is the vector

of their time derivatives, which is noted as ẋ for abbreviation. The ordinary differential

equation (ODEs) is of the form ẋ = φ(x, c), where constant vector c ∈ Rm are parameters of

the ODE model. Given the initial state x(t0), the finite time difference ∆t and the expression

φ(x, c), the ODEs are numerically simulated to obtain the state trajectory x(t1), . . . , x(tN),

where x(ti) = x(ti−1) + φ(x, c)∆t and ti = ti−1 + ∆t.

Task Definition. Following the definition of symbolic regression on differential equa-

tion in [240, 265], given a trajectory dataset of state variable and its time derivatives

{(x(ti), ẋ(ti))}N
i=1, ẋ(ti) represents the value of the derivative of variable x at time ti, the

symbolic regression task is to predict the best expression φ(x, c) that minimizes the average

loss on trajectory data:

arg min
φ

1
N

N∑
i=1

`(ẋ(ti), φ(x(ti), c))

Other formulations of this problem assume we have no access to its time derivatives, that

is {(ti, x(ti))}N
i=1 [266]. This formulation is tightly connected to our setting and relatively

more challenging. We can still estimate the finite difference between the current and next

state variables as its approximated time derivative: ẋ(ti) = x(ti)−x(ti−1)
ti−ti−1

.

Baselines. For the baselines on the differentiable equations, we consider

• SINDy [214]7 is a popular method using a sparse regression algorithm to find the

differential equations.

• ODEFormer [266]8 is the most recent framework that uses the transformer for the

discovery of ordinary differential equations. We use the provided pre-trained model to

predict the governing expression with the dataset. We execute the model 10 times and

pick the expression with the smallest NMSE error. The dataset size is 500, which is

the largest dataset configuration for the ODEFormer.
7↑https://github.com/dynamicslab/pysindy
8↑https://github.com/sdascoli/odeformer

298

https://github.com/dynamicslab/pysindy
https://github.com/sdascoli/odeformer

• ProGED [264]9 uses probabilistic context-free grammar to search for differential equa-

tions. ProGED first samples a list of candidate expressions from the defined proba-

bilistic context-free grammar for symbolic expressions. Then ProGED fits the open

constants in each expression using the given training dataset. The equation with the

best fitness scores is returned.

Dataset for Differential Equations. We collect a set of real-world ordinary differential

equations of multiple input variables from the SINDy codebase10.

• Lorenz Attractor. Let x0, x1, x2 be functions of time x0(t), x1(t), x2(t) and stands for

the position in the (x, y, z) coordinates. Here we consider 3-dimensional Lorenz system

whose dynamical behavior (x0, x1, x2) is governed by

ẋ0 = σ(x1 − x0),

ẋ1 = x0(ρ− x2)− x1,

ẋ2 = x0x1 − βx2,

with parameters σ = 10, β = 8/3, ρ = 28.
9↑https://github.com/brencej/ProGED
10↑https://github.com/dynamicslab/pysindy/blob/master/pysindy/utils/odes.py

299

https://github.com/brencej/ProGED
https://github.com/dynamicslab/pysindy/blob/master/pysindy/utils/odes.py

Variable Biological Definition Range Standard deviation
x0 Glucose [0.15, 1.60] 0.4872
x1 Glyceraldehydes-3-phosphate [0.19, 2.16] 0.6263and dihydroxyacetone phosphate pool
x2 1,3-bisphosphoglycerate [0.04, 0.20] 0.0503
x3 Cytosolic pyruvate and acetaldehyde pool [0.10, 0.35] 0.0814
x4 NADH [0.08, 0.30] 0.0379
x5 ATP [0.14, 2.67] 0.7478
x6 Extracellular pyruvate and acetaldehyde pool [0.05, 0.10] 0.0159

Table F.3. Biological definition of variables in Glycolysis Oscillations. The
allowed range of initial states for the training data set and the standard devi-
ation of the limit cycle are also included.

• Glycolysis Oscillations. The dynamic behavior of yeast glycolysis can be described as a

set of 7 variables x0, . . . , x6. The biological definition of each variable from Brechmann

and Rendall is provided in Table F.3. The governing equations are:

ẋ0 = J0 −
(k1x0x5)

(1 + (x5/K1)q) ,

ẋ1 = 2(k1x0x5)
1 + (x5/K1)q

− k2x1(N − x4)− k6x1x4,

ẋ2 = k2x1(N − x4)− k3x2(A− x5),

ẋ3 = k3x2(A− x5)− k4x3x4 − κ(x3 − x6),

ẋ4 = k2x1(N − x4)− k4x3x4 − k6x1x4,

ẋ5 = −2k1x0x5

1 + (x5/K1)q
+ 2k3x2(A− x5)− k5x5,

ẋ6 = φκ(x3 − x6)−Kx6

where the parameters J0 = 2.5, k1 = 100, k2 = 6, k3 = 16, k4 = 100, k5 = 1.28, k6 =

12, K = 1.8, κ = 13, q = 4, K1 = 0.52, φ = 0.1, N = 1, A = 4. The rest of the

differential equations from this Glycolysis family can be found at [306].

300

• MHD turbulence. The following equations describe the dynamic behavior of the Car-

bone and Veltri triadic MHD model:

ẋ0 = −2νx0 + 4(x1x2 − x4x5),

ẋ1 = −5νx1 − 7(x0x2 − x3x5),

ẋ2 = −9νx2 + 3(x0x1 − x3x4),

ẋ3 = −2µx4 + 2(x5x1 − x2x4),

ẋ4 = −5µx4 + σx5 + 5(x2x3 − x0x5),

ẋ5 = −9µx5 + σx4 + 9(x4x0 − x1x3),

where the parameters ν = 0, µ = 0, σ = 0. [307] define x0, x1, x2 as the velocity and

x3, x4, x5 as to the magnetic field. ν, µ represents, respectively, the kinematic viscosity

and the resistivity.

Evaluation Metrics. We use the R2-based Accuracy metric to evaluate if the whole set of

predicted expressions has a R2 score higher than 0.9999.

F.4 Extra Experiments

F.4.1 Discovered Algebraic Equations by the Learning Algorithms

The predicted expression by Vsr-Dpg (ours) for configuration (4, 4, 6). 60% of the

predicted expression has a ≤ 10−6 NMSE score.

The predicted result for prog-0:

− 0.3012000175544417x0x3 − 0.23479995033497178x0+

0.045433905730119135x1 + 0.10966141816565093x2+

0.22430013864298073x3 + 0.9739999857983681 sin(x2)+

0.3581998363171518 cos(x2) cos(x3)+

0.2862218136669438 cos(x3) + 3.126115887545009

301

The predicted result for prog-1:

− 0.5807073848480102x0 − 0.09660000567273663x1−

0.9748000148040502x2x3 − 0.4638000163793846x3 cos(x0)

− 0.4221638801953578x3 − 0.012754904995223835 sin(x2)

+ 0.15999997730356633 cos(x2) + 0.2524999760074076 cos(x3)

+ 0.3830840657508305

The predicted result for prog-2:

0.5974706919691478x0 + 0.8783029159486363x1+

0.584599994337829x2 cos(x1)− 0.8430097368938334x3−

0.4739999968689642 sin(x2)− 3.3558075600032683e− 8 sin(x3)

− 0.3244634752208093 cos(x2) + 0.5068000094901586 cos(x3)

− 0.787302540612925

The predicted result for prog-3:

− 0.89730000849859939x0 − 7.242399512792391x1−

1.2513833693643626 cos(x0)− 1.5175517989615754

0.032734568821399544x0 + 0.928299994219054x1sin(x0)

+ 0.11740000072851x1 − 1.6081211674938465x2+

0.5674704740296996x3 + 0.1769999997564291 sin(x2) cos(x3)

− 0.4200518345694358

302

The predicted result for prog-4:

0.10499999077952751x0 sin(x2) + 0.8918999999268585x3 sin(x1)

+ 0.11399999910836027x3 cos(x2)− 0.38250000586131516x3

− 0.14609999633658752x4 sin(x0) + 0.9090999941858626x4 sin(x1)

− 0.6846999999068688 sin(x0) + 0.9993000283241971 sin(x2)

− 0.19519999212829273 cos(x1) + 0.6172999945789425 cos(x4)

− 0.4587999974860775

The predicted result for prog-5:

0.3900029487047949x0 + 0.15013453625258577x2 + 0.7973748097464934sin(x2)

+ 0.6004443541983869cos(x1) + 1.4041023040405819

F.4.2 Discovered Differential Equations by each Learning Algorithm

We collect the best-predicted expression by each algorithm for the MHD turbulence

instance.

SINDy.

ẋ0 = 0.195 + 0.009x0 + 0.025x1 + 0.045x2 + 0.001x4 − 0.012x5 − 3.772x2
0 − 0.002x0x2

+ 1.157x0x3 + 0.002x0x4 − 0.011x0x5 − 2.016x2
1 + 3.976x1x2 − 0.001x1x3 + 1.158x1x4

+ 0.003x1x5 + 0.306x2
2 − 0.005x2x3 − 0.007x2x4 + 1.164x2x5 + 0.602x2

3

+ 0.011x3x5 + 0.437x2
4 − 3.996x4x5 − 1.426x2

5

303

ẋ1 = −1.046 + 0.011x0 − 0.008x1 + 0.01x2 − 0.005x3 − 0.003x4 − 0.012x5 − 0.686x2
0

+ 0.007x0x1 − 7.015x0x2 + 0.030x0x3 − 0.004x0x4 + 0.011x0x5 + 0.075x2
1 + 0.013x1x2

− 0.003x1x3 + 0.035x1x4 + 0.001x1x5 + 1.108x2
2 + 0.010x2x3 + 0.003x2x4 + 0.043x2x5

− 0.370x2
3 + 0.001x3x4 + 6.997x3x5 + 0.518x2

4 + 0.005x4x5 − 0.015x2
5

ẋ2 = 0.098 + 0.003x0 − 0.007x1 − 0.007x2 − 0.007x3 + 0.002x5 − 0.965x2
0 + 2.993x0x1

− 0.004x0x2 + 0.248x0x3 + 0.002x0x5 − 0.582x2
1 + 0.007x1x2 + 0.255x1x4 + 0.001x1x5

− 0.050x2
2 + 0.008x2x3 + 0.001x2x4 + 0.248x2x5 + 0.486x2

3 − 2.997x3x4 − 0.001x3x5

+ 0.161x2
4 − 0.002x4x5 − 0.340x2

5

ẋ3 = −0.027 + 0.004x0 − 0.003x1 − 0.012x2 + 0.001x3 + 0.001x4 + 0.002x5 − 2.958x2
0

− 0.013x0x2 + 0.750x0x3 + 0.019x0x5 − 1.610x2
1 + 0.009x1x2 − 0.003x1x3 + 0.751x1x4

+ 1.986x1x5 + 0.198x2
2 + 0.007x2x3 − 2.004x2x4 + 0.749x2x5 + 1.185x2

3 − 0.013x3x5

+ 0.589x2
4 + 0.005x4x5 − 0.989x2

5

ẋ4 = −0.434 + 0.024x0 + 0.008x1 − 0.001x2 − 0.002x3 − 0.006x4 − 0.015x5 + 3.462x2
0

+ 0.002x0x1 − 0.039x0x2 − 1.182x0x3 − 0.005x0x4 − 4.975x0x5 + 2.168x2
1 − 0.019x1x2

− 1.179x1x4 + 0.033x1x5 + 0.455x2
2 + 5.005x2x3 + 0.018x2x4 − 1.162x2x5 − 1.890x2

3

− 0.012x3x5 − 0.482x2
4 − 0.009x4x5 + 1.269x2

5

ẋ5 = −1.775− 0.015x0 − 0.022x1 + 0.121x2 − 0.032x3 + 0.009x4 − 0.035x5 + 21.145x2
0

+ 0.013x0x1 + 0.016x0x2 − 5.838x0x3 + 8.978x0x4 + 0.010x0x5 + 11.874x2
1 + 0.023x1x2

− 8.993x1x3 − 5.863x1x4 − 0.580x2
2 + 0.028x2x3 − 0.008x2x4 − 5.810x2x5 − 6.541x2

3

+ 0.003x3x4 + 0.004x3x5 − 2.911x2
4 − 0.003x4x5 + 7.768x2

5

304

ODEFormer
ẋ0 = 0.0093x0(−0.1332− x2)2

ẋ1 = −4.8118x2

ẋ2 = 2.4147x1 − 1.3145 sin(−0.1171 + 15.0423x1)

ẋ3 = −3.6859x1x2

ẋ4 = 0.9808x2 − 3.7675x5

ẋ5 = 0.0105
−11.23 + 7.7065x2

+ 8.2969x4 − 2.2755x1

SPL

ẋ0 = −0.2x0 + 4x1x2 − 4x4x5

ẋ1 = −7x0x2 − 0.5x1 + 6.99x3x5

ẋ2 = 2.95x0x1 − 3.02x3x4

ẋ3 = −2.07x2x4 + 0.435

ẋ4 = −4.97x0x5 + 5.0x2x3 + 0.045x2x5 + 0.025x3 + 0.032x4x5 − 0.993x4

ẋ5 = 9.076x0x4 − 0.0116x0 − 8.996x1x3 − 1.758x5

Vsr-Dpg (ours)

ẋ0 = −0.2x0 + 4.0x1x2 − 4.0x4x5

ẋ1 = −7.0x0x2 − 0.5x1 + 7.0x3x5

ẋ2 = 3.0x0x1 − 0.9x2 − 3.0x3x4

ẋ3 = 2.x1x5 − 2.x2x4 − 0.40x4

ẋ4 = −5.0x0x5 + 5.0x2x3 − 1.0x4 + 0.3x5

ẋ5 = 9.0x0x4 − 9.0x1x3 + 0.3x4 − 1.8x5

305

G. Appendix for Chapter 9

We summarize the supplementary material as follows: Section G.1 offers a detailed explana-

tion of the phase portrait for ODE and the concepts of active learning; Section G.2 provides

the extended explanation of the proposed Apps method; Section G.3 details the experimental

settings; Section G.3 collects the extra experimental result.

G.1 Extended Preliminaries

Phase Plane. The phase plane is a visual display of solutions of differential equations.

Given an ODE, its solutions are a family of functions, which can be graphically plotted in

the phase plane. At point (x1, x2), we draw a vector representing the derivatives of the

point with respect to the time variable, that is (dx1/dt, dx2/dt). With sufficient of these

arrows in place the system behavior over the regions of the place can be visualized and the

long-term behavior can be quantitatively determined, like the limit cycles and attractors.

The obtained entire figure is known as the phase portrait. It is a geometric representation of

all possible trajectories from the corresponding ODE. One can interpret the phase plane in

terms of dynamics. The solution of ODE corresponds to a trajectory of a point moving on

the phase plane with velocity.

Butterfly Effect. In the context of ordinary differential equations (ODEs), the butterfly

effect implies the sensitive dependence on initial conditions in dynamical systems. It means

that small differences in the initial state of a system can lead to vastly different trajectories

over time.

Mathematically, let x0 and x′
0 be two initial conditions that are very close to each other,

i.e., ‖x0 − x′
0‖ ≤ δ. The butterfly effect refers to the situation where the distance between

the corresponding trajectories, x(t) and x′(t), grows exponentially over time:

‖x(t)− x′(t)‖ ≈ exp(λt)‖x0 − x′
0‖,

306

where λ quantifies the rate at which two nearby trajectories diverge. If λ is positive, small

initial differences grow exponentially over time, implying that even a tiny perturbation (like a

butterfly flapping its wings) can lead to dramatically different outcomes in a chaotic system.

In this research, where the task is to query informative data to rank a given list of ODEs,

this phenomenon implies the drawn data (i.e., initial conditions) are less informative but its

close neighbor is highly informative. To avoid this, we can consider evaluating more initial

conditions, which demand huge space usage and slow time computation.

Different trajectories never intersect in the phase plane. Solutions of ODEs are

uniquely defined by initial conditions except at some special points in the phase plane.

Trajectories in the phase plane cannot cross (except at some special points) as this would

be equivalent to non-uniqueness of solutions. The special points are fixed points or singular

points where trajectories start or end.

The existence and uniqueness theorem has an important corollary: different trajectories

never intersect. If two trajectories did intersect, then there would be two solutions starting

from the same point (the crossing point), and this would violate the uniqueness part of

the theorem. In other words, a trajectory cannot move in two directions at once. Because

trajectories cannot intersect, phase portraits always have a well-groomed look to them.

Theorem G.1.1 (Existence and Uniqueness [308]). Consider the initial value problem

ẋ = f(x), x(0) = x0. Suppose that f is continuous and that all its partial derivatives ∂fi/∂xi,

i, j = 1, . . . , n, are continuous for x in some open connected set D ⊂ Rn. Then for x0 ∈ D,

the initial value problem has a solution x(t) on some time interval (a, b) about t = 0, and

the solution is unique.

Active Learning is a machine learning method in which the learning algorithm inspects

unlabeled data and interactively chooses the most informative data points to learn. The

goal of active learning algorithms is to learn an accurate predictor with as little total data

as possible. There are two standard settings: pool-based and streaming-based settings. In

the pool-based setting, the learner is provided with a pool of unlabeled data, from which the

interactively selects the most informative points and asks for their label. In the streaming-

based setting, the learner receives a sequence of unlabeled points and decides on whether to

307

request the label of the current point. In this research, we only consider pool-based active

learning algorithms.

According to the active learning [270, 273, 286, 309], the input is the initial condition

x0 ∈ Rn and the output is the obtained trajectory (xt1 , . . . , xtk
) ∈ Rn×k. In the formulation

of the Query-by-Committee method, they define the uncertainty at an input point as the

variance of the predictions of the committee members.

G.2 Extended Explanation of Apps method

Data-availability Assumption. A crucial assumption behind the success of Apps is the

availability of a Data Oracle O that returns a (noisy) observation of the trajectory with a

specified initial condition and a sequence of discrete times. Such a data oracle represents

conducting controlled experiments in the real world, which can be expensive. This differs

from the current symbolic regression, where a dataset is obtained prior to learning.

Vocabulary Construction. Given the set of math operators and variables:

Om = {+,−,×,÷, sin . . .} ∪ {x1, . . . , xn, const},

where const indidates the coefficients in the expressions. Following the definition of grammar

in Section 9.3. For example, given Om = {+,−,×,÷} ∪ {x1, x2, const}, we construct the

following grammar rules:

A -> (A + A)

A -> (A - A)

A -> A * A

A -> A / A

A -> x1

A -> x2

A -> const

B -> (B + B)

B -> (B - B)

308

B -> B * B

B -> B / B

B -> x1

B -> x2

B -> const

The non-terminal symbol “A” denotes a subexpression in dx1 and similarly “B” denotes a

subexpression in dx2. Each of them will be a unique token of the input vocabulary of the

decoder and will be mapped to a distinct vector in the first embedding layer of the decoder.

The above rules also form the output vocabulary of the decoder, where the neural decoder

predicts a categorical distribution over the list of grammar rules.

The discovery path is to build algorithms that mimic human scientific discovery, which

has achieved tremendous success in early works [189–191]. Recent work [275–277, 286] also

pointed out the importance of having a data oracle that can actively query data points,

rather than learning from a fixed dataset.

Sequential Decision Making Formulation. We consider an undiscounted MDP with a

finite horizon. The state space S is the set of all possible sequences of rules with maximum

steps. The action space A is the set of grammar rules. The t-th step state st is the sequence

of sampled rules before the current step t, i.e., st := (s1, . . . , st). The action at is the sampled

single rule, at := st+1.

The loss function of Apps is informed by the REINFORCE algorithm [239], which is

based on the log-derivative property:

∇θpθ(s) = pθ(s)∇θ log pθ(s)

where pθ(s) ∈ (0, 1) represents a probability distribution over input s with parameters θ and

notation ∇θ is the partial derivative with respect to θ. In our formulation, let pθ(s) denote

the probability of sampling a sequence of grammar rules s and reward(s) = 1/(1+NMSE(φ)).

Here φ is the corresponding expression constructed from the rules s following the procedure

in Section 9.3. The probability pθ(s) is modeled by the decoder modules. The objective

309

described in Equation 9.1 is translated to maximize the expected reward of the sampled

sequences from the decoder:

arg max
θ

Es∼pθ(s)[reward(s)]

Based on the REINFORCE algorithm, the gradient of the objective can be expanded as:

∇θEs∼pθ(s)[reward(s)] = ∇θ

∑
s∈Σ

reward(s)pθ(s)

=
∑
s∈Σ

reward(s)∇θpθ(s)

=
∑
s∈Σ

reward(s)pθ(s)∇θpθ(s)
pθ(s)

=
∑
s∈Σ

reward(s)pθ(s)∇θ log pθ(s)

= Es∼pθ(s) [reward(s)∇θ log pθ(s)]

where Σ represents all possible sequences of grammar rules sampled from the decoder. The

above expectation can be estimated by computing the averaged over samples drawn from

the distribution pθ(s). We first sample several times from the decoder module and obtain N

sequences (s1, . . . , sN), an unbiased estimation of the gradient of the objective is computed

as: ∇θJ(θ) ≈ 1
N

∑N
i=1 reward(si)∇θ log pθ(si). In practice, the above computation has a high

variance. To reduce variance, it is common to subtract a baseline function b from the reward.

In this study, we choose the baseline function as the average of the reward of the current

sampled batch expressions. Thus we have:

∇θJ(θ) ≈ 1
N

N∑
i=1

(reward(si)− b)∇θ log pθ(si),

where b = ∑N
i=1 reward(si). Based on the description of the execution pipeline of the pro-

posed Apps, we summarize every step in Algorithm 10.

310

Algorithm 10: Active Discovery of Ordinary Differential Equations via Phase Por-
trait Sketching.

Input: Defined expression grammar; neural sequential decoder; data oracle for the
ground-truth ODE O; maximum learning epoch #epochs; discrete time
steps T = (t1, . . . , tk).

Output: The best-predicted ODE.
1 initialize the set of best predicted ODEs Q ← ∅; ; // initialization
2 randomly draw data D from Oracle O;
3 for t← 1 to #epochs do
4 //in Figure 9.2(a);
5 sample N sequences {s1, . . . , sN} from the sequential decoder;
6 //in Figure 9.2(b);
7 construct N ODEs {φi}N

i=1 for each sequence from defined grammar;
8 fit coefficients in each expression with data ci ← Optimize(φi, D);
9 //in Figure 9.2(c);

10 find a region u of high uncertainty with phase portrait sketching;
11 draws trajectory data from Oracle in the selected region Du ← O(u, T);
12 computes reward using data Du;
13 save all expressions into Q ;
14 save new data Du into D;
15 applies policy gradient to the parameters of the decoder;
16 return the expression in Q with best goodness-of-fit on data D.

G.2.1 Implementation of Apps

In the experiments, we use an embedding layer, a multi-head self-attention layer, and

finally softmax layer as the decoder. The dimension of the input embedding layer and the

hidden vector is configured as 256. We use the Adam optimizer as the gradient descent algo-

rithm with a learning rate of 0.009. The learning epoch is configured as 50. The maximum

sequence of grammar rules is fixed to be 20. The batch size of expressions sampled from the

decoder is set as 100.

When fitting the values of coefficients in each expression, we sample a batch of data with

batch size 1024 from the data Oracle. The open constants in the expressions are fitted on

the data using the BFGS optimizer1.
1↑https://docs.scipy.org/doc/scipy/reference/optimize.minimize-bfgs.html

311

https://docs.scipy.org/doc/scipy/reference/optimize.minimize-bfgs.html

1 import numpy as np
2 from sympy.parsing.sympy_parser import parse_expr
3 from sympy import lambdify, symbols
4

5 expr_odes = [parse_expr(one_expr) for one_expr in expr_strs]
6 t = symbols('t')
7 func = lambdify((t, input_var_Xs), expr_odes)
8 pred_trajectories = []
9 for one_x_init in x_init_conds:

10 one_solution = runge_kutta4(func, t_evals, one_x_init)
11 pred_trajectories.append(one_solution)
12 pred_trajectories = np.asarray(pred_trajectories)

Figure G.1. Implemented 4th order Runge Kutter method.

We use a multi-processor Python library pathos to fit multiple expressions in parallel

using 20 CPU cores. This greatly reduced the total time of the coefficients fitting step. The

rest of the implementation details are available in the code implementation.

In terms of numerical integration, we use the fourth-order Runge–Kutta (RK45) method

to compute the trajectory data of the specified ODEs. Other numerical integration algo-

rithms in sicpy.integrate are implemented with adaptive time step size, which makes it

very slow when fitting the coefficients in the candidate ODEs.

Every candidate ODE is represented by the Sympy Lambdify function. We implement the

Runge-Kutta function instead of using the Scipy.integrate.solve_ivp function, where the

latter has internally used the adaptive step size and is extremely slow for specific candidate

ODEs. In our experiments, we find that the Scipy.integrate.solve_ivp API cannot

return a trajectory when running together with the coefficient fitting steps for more than 12

hours.

In Figure G.1, given one predicted ODE expr_strs, which is represented as an array

of expressions of length n, the following lines of code compute the predicted trajectory

pred_trajectories for a batch of initial conditions x_init_conds. input_var_Xs the list

of symbols of variables: [x1, . . . , xn]. We can then compare if the predicted trajectories are

312

close to the ground-truth trajectories using the NMSE metric, given the same set of initial

conditions.

Hyper-parameter Configuration. An expression containing placeholder symbol A or

containing more than 20 open constants is not evaluated on the data, the fitness score of it

is −∞. In terms of the reward function in the policy gradient objective, we use reward(s) =
1

1+NMSE(φ) . The normalized mean-squared error metric is further defined in Equation E.2. We

set the relative size of the interval of the region to be 1/4, meaning the length of every edge

of the region is 1/4 of the original interval for each variable. We set the number of regions to

be 10. The region is randomly generated by first generating the leftmost point in the original

variable interval and then applying each edge of the region with a given relative length.

The deep network part is implemented using the most recent version of Pytorch, the

expression evaluation is based on the Sympy library, and the step for fitting open constants

in expression with the dataset uses the Scipy library. The visualization of the phase portrait

is from 2 and the part of the experimental visualization is borrowed from 3.

G.2.2 Limitation and Broader Impact

Limitation The proposed Apps that generates phase portraits can suffer from resolution

issues. Fine details of the dynamics might be missed if the region width is too large or the

number of sampled points in each region is too small. It is also unclear if the proposed phase

portrait sketching idea is applicable to partial differential equations.

Broad Impact The proposed Apps can be useful for scientists to actively discover govern-

ing laws from data. It will accelerate the discovery process compared to passive learning

algorithms.

G.3 Experiment Settings

G.3.1 Baselines

For the baselines of the ODE discovery task, we consider
2↑https://phaseportrait.github.io/
3↑https://github.com/sdascoli/odeformer/blob/main/ODEFormer_demo.ipynb

313

https://phaseportrait.github.io/
https://github.com/sdascoli/odeformer/blob/main/ODEFormer_demo.ipynb

• SINDy [214]4 is a popular method using a sparse regression algorithm to find the differ-

ential equations.

• ProGED [264]5 uses probabilistic context-free grammar to search for differential equa-

tions. ProGED first samples a list of candidate expressions from the defined probabilistic

context-free grammar for symbolic expressions. Then ProGED fits the open constants

in each expression using the given training dataset. The equation with the best fitness

scores is returned.

• ODEFormer [266]6 is the most recent framework that uses the transformer for the discov-

ery of ordinary differential equations. We use the provided pre-trained model to predict

the governing expression with the dataset. We execute the model 10 times and pick the

expression with the smallest NMSE error. The dataset size is 500, which is the largest

dataset configuration for the ODEFormer.

In principle, the ODE discovery task can be formulated as a symbolic regression task

where the input is xt and the output is directly ẋt. Given the trajectory data (x0, x(t1), . . . , x(tn)),

its output label is approximated by computing:

ẋ(ti) ≈
(x(ti+1)− x(ti))

(ti+1 − ti)

In literature, this approach is called symbolic regression with gradient matching. We consider

two representative baselines in the symbolic regression task:

• Symbolic Physics Learner (SPL) is a heuristic search algorithm based on Monte Carlo Tree

Search for finding optimal sequences of production rules using context-free grammars [240,

258]7. It employs Monte Carlo simulations to explore the search space of all the production

rules and determine the value of each node in the search tree. SPL consists of four steps

in each iteration: 1) Selection. Starting at a root node, recursively select the optimal

child (i.e., one of the production rules) until reaching an expandable node or a leaf node.
4↑https://github.com/dynamicslab/pysindy
5↑https://github.com/brencej/ProGED
6↑https://github.com/sdascoli/odeformer
7↑https://github.com/isds-neu/SymbolicPhysicsLearner

314

https://github.com/dynamicslab/pysindy
https://github.com/brencej/ProGED
https://github.com/sdascoli/odeformer
https://github.com/isds-neu/SymbolicPhysicsLearner

Apps ProGED ODEFormer SPL

goodness-of-fit function NegMSE NegMSE NegRMSE NegRMSE
Training setting 1 sec with step-size 0.001 sec and 100 random initial conditions
Testing setting 10 sec with step-size 0.001 sec and 100 random initial conditions

CPUs Type CPU is Milan CPUs @ 2.45GHz

#CPU for training 20

Table G.1. Major hyper-parameters settings for all the algorithms considered
in the experiment.

2) Expansion. If the expandable node is not the terminal, create one or more of its child

nodes to expand the search tree. 3) Simulation. Run a simulation from the new node

until achieving the result. 4) Backpropagation. Update the node sequence from the new

node to the root node with the simulated result. To balance the selection of optimal child

node(s) by exploiting known rewards (exploitation) or expanding a new node to explore

potential rewards exploration, the upper confidence bound (UCB) is often used.

• End to End Transformer for symbolic regression (E2ETransformer) [208]8. They propose

to use a deep transformer to pre-train on a large set of randomly generated expressions.

We load the shared pre-trained model. We provide the given dataset and the E2ETrans-

former infers 10 best expressions. We choose to report the expression with the best NMSE

scores.

Note that the open link in NSODE [310] has no code implementation by far. Thus, the

NSODE approach is not included for comparison. Also, a recent method [273] proposes a

new learning framework for actively drawing data. However, their approaches are designed

for searching algebraic equations, and the integration into differential equations is unclear.

So their approach is also not considered for comparison in this work.

G.3.2 Evaluation Metrics

The goodness-of-fit indicates how well the learning algorithms perform in discovering

unknown ODEs. The testing set contains new trajectories with new initial conditions, gen-

erated from the ground-truth ODE. we measure the goodness-of-fit of a predicted expres-
8↑https://github.com/facebookresearch/symbolicregression

315

https://github.com/facebookresearch/symbolicregression

sion φ = [φ1, . . . , φm], by evaluating the mean-squared-error (MSE) and normalized-mean-

squared-error (NMSE):

NMSE = 1
σ2

1
n

n∑
i=1

(x(ti)− x̂(ti))2, (G.1)

The empirical variance σ =
√

1
n

∑n
i=1

(
xi − 1

n

∑n
i=1 xi

)2
. We use the NMSE as the main

criterion for comparison in the experiments and present the results on the remaining metrics

in the case studies. The main reason is that the NMSE is less impacted by the output

range. The output ranges of expression are dramatically different from each other, making

it difficult to present results uniformly if we use other metrics.

Prior work [180] further proposed a coefficient of determination R2-based score over a

group of expressions in the dataset, as a statistical measure of whether the best-predicted

expression is almost close to the ground-truth expression. An R2 of 1 indicates that the

regression predictions perfectly fit the data [299]. The R2 score is computed as follows:

R2(φi) = 1− NMSE(φi) (G.2)

G.3.3 Computational Resource

All the methods are running with Python 3.10 and on the same set of hardware where

the CPU is Milan CPUs @ 2.45GHz, the RAM is set as 8GB, and the maximum running

time is set as 24 hours. The extra necessary configuration is collected in the anonymous code

repository. The hyper-parameter configurations of baselines are listed in Table G.1.

G.3.4 Extended Experimental Results

The given set of best-predicted ODEs for Table 9.3 is shown in Figure G.2.

The Kendall tau distance is computed with two ranked lists, one of them is evaluated

on full data and another is evaluated on the chosen region with high uncertainty. We use

library9 to compute the ranking score.
9↑https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kendalltau.html

316

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kendalltau.html

φ1 = (0.088x1, 0.146 cos(x1))
φ2 = (−0.0107 sin(x1), 0.712)
φ3 = (2/ cos(x1) + 0.1759 sin(x1), 0.820)
φ4 = (0.645 sin(x0)− 0.893 cos(x0),

0.2891 x1

(x1 − 0.153 cos(x0))
+ 0.213 sin(x0)

(x1 − 0.153 cos(x0))
− 0.0443 cos(x0)

(x1 − 0.15 cos(x0))
)

φ5 = (0.95 sin(x0)− 0.29, 0.14153x1 − 0.691 sin(x1)
cos(x0)

− 0.0673 cos(x0) + 0.8825cos(x1)
cos(x0)

)

φ6 = (1.63 sin(x0), x0)
φ7 = (1.15 sin(x0),−70.56 cos(x1))
φ8 = (0.71,−70.56 cos(x1))
φ9 = (0.99 cos(x0),−1.0x0 − 39.53 sin(x1)− 152.57 cos(x1))

φ10 = (−0.871 sin(x1),−3.826 sin(x0)− 0.212 sin(x1) + 4.311)
φ11 = (0.088x1, 0.146 cos(x1))
φ12 = (−0.010 sin(x1), 0.712)
φ13 = (1.477e− 5x12/ cos(x1) + 0.1759 sin(x1), 0.8205)
φ14 = (0.645 sin(x0)− 0.893 cos(x0),

0.289x1

(x1 − 0.15 cos(x0))
+ 0.21 sin(x0)

(x1 − 0.153 cos(x0))
− 0.044 cos(x0)

(x1 − 0.1532 cos(x0))
)

φ15 = (0.953 sin(x0)− 0.2922, 0.1415x1 − 0.691 sin(x1)
cos(x0)

− 0.0673 cos(x0) + 0.882cos(x1)
cos(x0)

)

φ16 = (1.631 sin(x0), x0)
φ17 = (1.152 sin(x0),−70.56 cos(x1))
φ18 = (0.710,−70.56 cos(x1))
φ19 = (0.99 cos(x0),
− 1.0x0 − 39.53 sin(x1)− 152.57 cos(x1))

φ20 = (−0.871 sin(x1),−3.826 sin(x0)− 0.211 sin(x1) + 4.3117)

Figure G.2. The given set of best-predicted ODEs for Table 9.3.

G.3.5 Dataset

We present the visualized phase portraits and the explicit forms of the ODEs considered

in this research in the following figures and tables.

317

−10 0 10
x1

−10

−5

0

5

10

x 2

Equation ID 1

−10 0 10
x1

−10

−5

0

5

10

x 2

Equation ID 2

2 4
x1

1

2

3

x 2

Equation ID 3

−10 0 10
x1

−10

−5

0

5

10

x 2

Equation ID 4

−10 0 10
x1

−10

−5

0

5

10

x 2

Equation ID 5

5 10
x1

0

5

10

x 2

Equation ID 6

0.2 0.4 0.6
x1

0.2

0.4

0.6

x 2

Equation ID 7

−10 0 10
x1

−10

−5

0

5

10

x 2

Equation ID 8

−5 0 5
x1

−10

−5

0

5

10

x 2

Equation ID 9

−10 0 10
x1

−10

−5

0

5

10

x 2

Equation ID 10

−10 0 10
x1

−4

−2

0

2

4

x 2

Equation ID 11

5 10
x1

2

4

6

8

10

x 2

Equation ID 12

Figure G.3. Selected phase portrait of Strogatz dataset with variables n = 2.

318

2 4
6

8
10

x1
2

4
6

8
10

x 2

2
4
6
8
10

x 3

Equation ID 1

2 4
6

8
10

x1
2

4
6

8
10

x 2

2
4
6
8
10

x 3

Equation ID 2

2 4
6

8
10

x1
2

4
6

8
10

x 2

2
4
6
8
10

x 3

Equation ID 3

2 4
6

8
10

x1
2

4
6

8
10

x 2

2
4
6
8
10

x 3

Equation ID 4

2 4
6

8
10

x1
2

4
6

8
10

x 2

2
4
6
8
10

x 3

Equation ID 5

2 4
6

8
10

x1
2

4
6

8
10

x 2

2
4
6
8
10

x 3

Equation ID 6

2 4
6

8
10

x1
2

4
6

8
10

x 2
2
4
6
8
10

x 3

Equation ID 7

2 4
6

8
10

x1
2

4
6

8
10

x 2

2
4
6
8
10

x 3

Equation ID 8

−1
0

1x1 −1

0

1

x 2

−0.5

0.0

0.5

1.0

1.5

x 3

Equation ID 9

2 4
6

8
10

x1
2

4
6

8
10

x 2

2
4
6
8
10

x 3

Equation ID 10

Figure G.4. Selected phase portrait of Strogatz dataset with variables n = 3.

319

ID Equation

1 RC-circuit (charging capacitor)
ẋ0 = (0.7− x0/1.2)/2.31

2 Population growth (naive)
ẋ0 = 0.23x0

3 Population growth with carrying capacity
ẋ0 = 0.79x0(1− x0/74.3)

4 RC-circuit with non-linear resistor (charging capacitor)
ẋ0 = 1/(1 + exp(0.5− x0/0.96))− 0.5

5 Velocity of a falling object with air resistance
ẋ0 = 9.81− 0.0021175x2

0
6 Autocatalysis with one fixed abundant chemical

ẋ0 = 2.1x0 − 0.5x2
0

7 Gompertz law for tumor growth
ẋ0 = 0.032x0 log(2.29x0)

8 Logistic equation with Allee effect
ẋ0 = 0.14x0(1− x0/130.0)(x0/4.4− 1)

9 Language death model for two languages
ẋ0 = (1− x0)0.32− x00.28

10 Refined language death model for two languages
ẋ0 = (1− x0)0.2x1.2

0 − x0(1− 0.2)(1− x0)1.2

11 Naive critical slowing down (statistical mechanics)
ẋ0 = −x3

0
12 Photons in a laser (simple)

ẋ0 = 1.8x0 − 0.1107x2
0

13 Overdamped bead on a rotating hoop
ẋ0 = 0.0981 sin(x0)(9.7 cos(x0)− 1)

14 Budworm outbreak model with predation
ẋ0 = 0.78x0(1− x0/81.0)− 0.9x2

0/(21.22 + x2
0)

15 Budworm outbreak with predation (dimensionless)
ẋ0 = 0.4x0(1− x0/95.0)− x2

0/(1 + x2
0)

16 Landau equation (typical time scale tau = 1)
ẋ0 = 0.1x0 −−0.04x3

0 − 0.001x5
0

17 Logistic equation with harvesting/fishing
ẋ0 = 0.4x0(1− x0/100.0)− 0.3

18 Improved logistic equation with harvesting/fishing
ẋ0 = 0.4x0(1− x0/100.0)− 0.24x0/(50.0 + x0)

19 Improved logistic equation with harvesting/fishing (dimensionless)
ẋ0 = x0(1− x0)− 0.08x0/(0.8 + x0)

20 Autocatalytic gene switching (dimensionless)
ẋ0 = 0.1− 0.55x0 + x2

0/(1 + x2
0)

21 Dimensionally reduced SIR infection model for dead people (dimensionless)
ẋ0 = 1.2− 0.2x0 − exp(−x0)

Table G.2. Selected Strogatz dataset with variable n = 1.

320

ID Explicit Equations

1 Harmonic oscillator without damping
ẋ0 = x1 ẋ1 = −2.1x0

2 Harmonic oscillator with damping
ẋ0 = x1 ẋ1 = −4.5x0 − 0.43x1

3 Lotka-Volterra competition model (Strogatz version with sheeps and rabbits)
ẋ0 = x0(3.0− x0 − 2.0x1) ẋ1 = x1(2.0− x0 − x1)

4 Lotka-Volterra simple (as on Wikipedia)
ẋ0 = x0(1.84− 1.45x1) ẋ1 = −x1(3.0− 1.62x0)

5 Pendulum without friction
ẋ0 = x1 ẋ1 = −0.9 sin(x0)

6 Dipole fixed point
ẋ0 = 0.65x0x1 ẋ1 = x2

1 − x2
0

7 RNA molecules catalyzing each others replication
ẋ0 = x0(x1 − 1.61x0x1) ẋ1 = x1(x0 − 1.61x0x1)

8 SIR infection model only for healthy and sick
ẋ0 = −0.4x0x1 ẋ1 = 0.4x0x1 − 0.314x1

9 Damped double well oscillator
ẋ0 = x1 ẋ1 = −0.18x1 + x0 − x3

0
10 Glider (dimensionless)

ẋ0 = − sin(x1)− 0.08x2
0 ẋ1 = x0 − cos(x1)/x0

11 Frictionless bead on a rotating hoop (dimensionless)
ẋ0 = x1 ẋ1 = sin(x0)(cos(x0)− 0.93)

12 Rotational dynamics of an object in a shear flow
ẋ0 = cot(x1) cos(x0) ẋ1 = sin(x0)(cos(x1)2 + 4.2 sin(x1)2)

13 Pendulum with non-linear damping, no driving (dimensionless)
ẋ0 = x1 ẋ1 = − sin(x0)− x1 − 0.07 cos(x0)x1

14 Van der Pol oscillator (standard form)
ẋ0 = x1 ẋ1 = −x0 − 0.43(x2

0 − 1)x1
15 Van der Pol oscillator (simplified form from Strogatz)

ẋ0 = 3.37(x1 − x3
0/3 + x0) ẋ1 = −x0/3.37

16 Glycolytic oscillator, e.g., ADP and F6P in yeast (dimensionless)
ẋ0 = −x0 + 2.4x1 + x2

0x1 ẋ1 = 0.07− 2.4x0 − x2
0x1

17 Duffing equation (weakly non-linear oscillation)
ẋ0 = x1 ẋ1 = −x0 + 0.886x1(1− x2

0)
18 Cell cycle model by Tyson for interaction between protein cdc2and cyclin (dimensionless)

ẋ0 = 15.3(x1 − x0)(0.001 + x2
0)− x0 ẋ1 = 0.3− x0

19 Reduced model for chlorine dioxide-iodine-malonic acid rection (dimensionless)
ẋ0 = 8.9− x0 − 4.0x0x1/(1 + x2

0) ẋ1 = 1.4x0(1− x1/(1 + x2
0))

20 Driven pendulum with linear damping / Josephson junction (dimensionless)
ẋ0 = x1 ẋ1 = 1.67− sin(x0)− 0.64x1

21 Driven pendulum with quadratic damping (dimensionless)
ẋ0 = x1 ẋ1 = 1.67− sin(x0)− 0.64x1

1

Table G.3. Selected Strongatz dataset with variables n = 2.

321

ID Explicit Equations

1 Maxwell-Bloch equations (laser dynamics)
ẋ0 = 0.1(x1 − x0)
ẋ1 = 0.21(x0x2 − x1)
ẋ2 = 0.34(3.1 + 1− x2 − 3.1x0x1)

2 Model for apoptosis (cell death)
ẋ0 = 0.1− 0.4x1x0/(0.1 + x0)− 0.05x0
ẋ1 = 0.6x2(0.1 + x1)− 0.2x1/(0.1 + x1)− 7.95x0x1/(2.0 + x1)
ẋ2 = −0.6x2(0.1 + x1) + 0.2x1/(0.1 + x1) + 7.95x0x1/(2.0 + x1)

3 Lorenz equations in well-behaved periodic regime
ẋ0 = 5.1(x1 − x0)
ẋ1 = 12.0x0 − x1 − x0x2
ẋ2 = x0x1 − 1.67x2

4 Lorenz equations in complex periodic regime
ẋ0 = 10.0(x1 − x0)
ẋ1 = 99.96x0 − x1 − x0x2
ẋ2 = x0x1 − 2.6666666666666665x2

5 Lorenz equations standard parameters (chaotic)
ẋ0 = 10.0(x1 − x0)
ẋ1 = 28.0x0 − x1 − x0x2
ẋ2 = x0x1 − 2.6666666666666665x2

6 Rössler attractor (stable fixed point)
ẋ0 = 5.0(−x1 − x2)
ẋ1 = 5.0(x0 − 0.2x1)
ẋ2 = 5.0(0.2 + x2(x0 − 5.7))

7 Rössler attractor (periodic)
ẋ0 = 5.0(−x1 − x2)
ẋ1 = 5.0(x0 + 0.1x1)
ẋ2 = 5.0(0.2 + x2(x0 − 5.7))

8 Rössler attractor (chaotic)
ẋ0 = 5.0(−x1 − x2)
ẋ1 = 5.0(x0 + 0.2x1)
ẋ2 = 5.0(0.2 + x2(x0 − 5.7))

9 Aizawa attractor (chaotic)
ẋ0 = x0(x2 − 0.7)− 3.5x1
ẋ1 = 3.5x0 + x1(x2 − 0.7)
ẋ2 = 0.65 + 0.95x2 − x3

2/3.− (x2
0 + x2

1)(1 + 0.25x2) + 0.1x2x
3
0

10 Chen-Lee attractor
ẋ0 = 5x0 − x1x2
ẋ1 = −10.0x1 + x0x2
ẋ2 = −3.8x2 + x0x1/3.0

Table G.4. The Strogatz dataset with variables n = 3.

322

ID Equations

1 Norel1990 - MPF and Cyclin Oscillations
ẋ0 = 1.0x2

0x1 − 10.0x0/(x0 + 1.0) + 3.466x1
ẋ1 = 1.2− 1.0x0

2 Chrobak2011 - A mathematical model of induced cancer-adaptive immune system competition
ẋ0 = −0.03125x2

0 − 0.125x0x1 + 0.0625x0
ẋ1 = −0.08594x0x1 − 0.03125x2

1 + 0.03125x1
3 FitzHugh1961-NerveMembrane

ẋ0 = −1.0x3
0 + 3.0x0 + 3.0x1 − 1.2

ẋ1 = −0.3333x0 − 0.2667x1 + 0.2333
4 Clarke2000 - One-hit model of cell death in neuronal degenerations

ẋ0 = −0.278x0
ẋ1 = −0.223x1

5 Wodarz2018/1 - simple model
ẋ0 = 0.004x0 + 0.004x1/(0.01x1

0.0 + 1.0)
ẋ1 = 0.006x0 − 0.003x1 − 0.004x1/(0.01x1

0.0 + 1.0)
6 Ehrenstein2000 - Positive-Feedback model for the loss of acetylcholine in Alzheimer’s disease

ẋ0 = −0.007x0x1
ẋ1 = −0.004x0 − 0.01x1 + 0.33

7 Cao2013 - Application of ABSIS method in the bistable Schlagl model
ẋ0 = 0.12x2

0 − 3.071x0 + 12.5− 0.00192/x0
ẋ1 = −0.12x2

0 + 3.071x0 − 12.5 + 0.00192/x0
8 Chaudhury2020 - Lotka-Volterra mathematical model of CAR-T cell and tumour kinetics

ẋ0 = 0.002x0x1 − 0.16x0
ẋ1 = 0.15x1

9 Baker2013 - Cytokine Mediated Inflammation in Rheumatoid Arthritis
ẋ0 = −x0 + 3.5x2

1/(x2
1 + 0.25)

ẋ1 = 1.0x2
1/(x2

0x
2
1 + x2

0 + x2
1 + 1.0)− 1.25x1 + 0.025/(x2

0 + 1.0)
10 Somogyi1990-CaOscillations

ẋ0 = −5.0x0x
4
1.0/(x4

1.0 + 81.0)− 0.01x0 + 2.0x1
ẋ1 = 5.0x0x

4
1.0/(x4

1.0 + 81.0) + 0.01x0 − 3.0x1 + 1.0
11 Cucuianu2010 - A hypothetical-mathematical model of acute myeloid leukaemia pathogenesis

ẋ0 = −0.1x0 + 0.3x0/(0.5x0 + 0.5x1 + 1.0)
ẋ1 = −0.1x1 + 0.3x1/(0.5x0 + 0.5x1 + 1.0)

12 Wang2016/3 - oncolytic efficacy of M1 virus-SN model
ẋ0 = −0.2x0x1 − 0.02x0 + 0.02
ẋ1 = 0.16x0x1 − 0.03x1

13 Chen2011/1 - bone marrow invasion absolute model
ẋ0 = −0.2x2

0 + 0.1x0
ẋ1 = −1.0x0x1 − 0.8x2

1 + 0.7x1
14 Cao2013 - Application of ABSIS method in the reversible isomerization model

ẋ0 = −0.12x0 + 1.0x1
ẋ1 = 0.12x0 − 1.0x1

Table G.5. Selected ODEBase dataset with variables n = 2.

323

1 Turner2015-Human/Mosquito ELP Model
ẋ0 = 600.0− 0.411x0
ẋ1 = 0.361x0 − 0.184x1
ẋ2 = 0.134x1 − 0.345x2

2 Al-Tuwairqi2020 - Dynamics of cancer virotherapy - Phase I treatment
ẋ0 = −1.0x0x2
ẋ1 = 1.0x0x2 − 1.0x1
ẋ2 = −0.02x0x2 + 1.0x1 − 0.15x2

3 Fassoni2019 - Oncogenesis encompassing mutations and genetic instability
ẋ0 = 0.01− 0.01x0
ẋ1 = 0.03x1
ẋ2 = −0.5x2

2 + 0.034x2
4 Zatorsky2006-p53-Model5

ẋ0 = −3.7x0x1 + 2.0x0
ẋ1 = −0.9x1 + 1.1x2
ẋ2 = 1.5x0 − 1.1x2

5 Lenbury2001-InsulinKineticsModel-A
ẋ0 = −0.1x0x2 + 0.2x1x2 + 0.1x2
ẋ1 = −0.01x0 + 0.01 + 0.01/x2
ẋ2 = −0.1x1x2 + 0.257x1 − 0.1x2

2 + 0.331x2 − 0.3187
6 Zatorsky2006-p53-Model1

ẋ0 = −3.2x0x1 + 0.3
ẋ1 = −0.1x1 + 0.1x2
ẋ2 = 0.4x0 − 0.1x2

7 Smallbone2013 - Colon Crypt cycle - Version 1
ẋ0 = −0.002207x2

0 − 0.002207x0x1 − 0.002207x0x2 + 0.1648x0
ẋ1 = −0.01312x2

0 − 0.0216x0x1 − 0.01312x0x2 + 1.574x0 − 0.008477x2
1 − 0.008477x1x2 + 0.5972x1

ẋ2 = −0.04052x0x1 − 0.04052x2
1 − 0.04052x1x2 + 4.863x1 − 1.101x2

8 Cortes2019 - Optimality of the spontaneous prophage induction rate.
ẋ0 = −0.99x2

0/(x0 + x1)− 1.0x0x1/(x0 + x1) + 0.99x0
ẋ1 = −0.99x0x1/(x0 + x1)− 1.0x2

1/(x0 + x1) + 1.0x1
ẋ2 = −0.001x2

9 Figueredo2013/2 - immunointeraction model with IL2
ẋ0 = −1.0x0x1/(x0 + 1.0) + 0.18x0
ẋ1 = 0.05x0 + 0.124x1x2/(x2 + 20.0)− 0.03x1
ẋ2 = 5.0x0x1/(x0 + 10.0)− 10.0x2

10 A mathematical model of cytotoxic and helper T cell interactions in a tumour microenvironment
ẋ0 = −10.0x2

0 − 2.075x0x2 + 10.0x0
ẋ1 = 0.19x0x1/(x2

0 + 0.0016)− 1.0x1 + 0.5
ẋ2 = −2.075x0x2 + 1.0x1x2 − 1.0x2 + 2.0

11 Munz2009 - Zombie SIZRC
ẋ0 = −0.009x0x1 + 0.05
ẋ1 = 0.004x0x1
ẋ2 = 0.005x0x1

Table G.6. Selected ODEBase dataset with variables n = 3.

324

	TITLE PAGE
	COMMITTEE APPROVAL
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Borad Overview
	Brief Description of Each Chapter
	Summary

	Constraint Reasoning Embedded Structured Prediction
	Introduction
	Preliminaries
	Structured Prediction
	Decision Diagrams

	Constraint Reasoning Embedded in Structured Prediction
	Constrained Reasoning Embedded in Structured Prediction
	Discussions

	Searching for the Optimal CORE-SP Structure
	Applications
	Vehicle Dispatching Service Planning
	If-Then Program Synthesis
	SQL Query Generation from Natural Language

	Results and Analysis
	Vehicle Dispatching Service Planning
	If-Then Program Synthesis
	SQL Query Generation from Natural Language

	Summary

	Learning Combinatorial Structures via Markov Random Fields with Sampling through Lovász Local Lemma
	Introduction
	Preliminaries
	Sampling through Lovász Local Lemma
	Neural Lovász Sampler
	Neural Lovász Sampler (Nelson)
	Contrastive Divergence-based Learning

	Related Work
	Experiments
	Learn Random K-SAT Solutions with Preference
	Sink-Free Orientation in Undirected Graphs
	Learn Vehicle Delivery Routes

	Summary

	Controllable Language Generation via Combinatorial Constraint Satisfaction: A Tree Search Enhanced Monte-Carlo Approach
	Introduction
	Language Generation via Combinatorial Constraint Satisfaction
	Constraint Formulation

	Tree Search Enhanced MCMC
	Motivation: Breaking the Local ``Low Acceptance'' Barrier
	Detailed Procedure of TSMH

	Experiments
	Experiment Settings
	Interrogative Sentence Generation
	Imperative Sentence Generation
	Sentence Generation with Given Sentiment Score

	Summary

	Probabilistic Area Loss Minimization for Protein Sequence Alignment
	Introduction
	Preliminary
	Pairwise Sequence Alignment

	Probabilistic Area Loss Minimization
	Two-step Model
	Model Learning
	Inference in Testing

	Experiments
	Learning Effectiveness for PALM
	Ablation Study on Weight Hyper-parameter
	Time Efficiency for Gradient Computation

	Summary

	Symbolic Regression via Control Variable Genetic Programming
	Introduction
	Preliminaries
	Control Variable Genetic Programming
	Control Variable Experiment
	Control Variable Genetic Programming
	Theoretical Analysis

	Related Work
	Experiments
	Experimental Settings
	Experimental Analysis

	Summary

	Racing Control Variable Genetic Programming for Symbolic Regression
	Introduction
	Preliminaries
	Symbolic Regression for Scientific Discovery
	Control Variable Trials

	Methodology
	Motivation
	Racing Control Variable Genetic Programming

	Related Work
	Experiments
	Experimental Settings
	Experimental Result Analysis

	Summary

	Vertical Symbolic Regression via Deep Policy Gradient
	Introduction
	Preliminaries
	Methodology
	Expression Represented as Grammar Rules
	Expression Sampling from Recurrent Network

	Related Work
	Experiment
	Regression on Algebraic Equations
	Regression on Ordinary Differential Equations

	Summary

	Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching
	Introduction
	Preliminaries
	Methodology
	Motivation
	The Learning Pipeline

	Related Work
	Experiments
	Experimental Settings
	Experimental Analysis

	Summary

	Future Work
	Automatic Discovery of New Knowledge for Novel Materials
	Combining AR and ML to accelerate Automatic Theorem Proving
	Providing Safety Guarantees on high-stake AI-driven system

	REFERENCES
	Appendix for Chapter 3
	Probability Distribution of Algorithm 2
	Definitions and Notations
	Ratio Property Lemma
	Proof of Theorem 3.3.1
	Difference to the Original Proof
	A Running Example from the Markov Chain Monte Carlo Perspective

	Running Time Analysis of Algorithm 2
	Definitions and Notations
	An Upper Bound on Expected Running Time
	Difference to the Existing Proof

	Constrained MRF Model
	Single Variable Form of Constrained MRF
	Gradient of log-Partition Function

	Experiment Settings and Configurations
	Implementation Details
	Learn Random K-SAT Solutions with Preference
	Learn Sink-Free Orientation in Undirected Graphs
	Learn Vehicle Delivery Routes
	Detailed Baselines Configuation
	Detailed Definition of Evaluation Metrics
	Hyper-parameter Settings

	Appendix for Chapter 4
	Detailed Experiment Settings
	Interrogative Sentences Generation
	Imperative Sentences Generation
	Sentiment Sentence Generation

	Case Studies

	Appendix for Chapter 5
	Convergence Analysis of the Maximum Likelihood Learning
	Basic Definitions and Properties

	The Relationship between Variance and L-smoothness
	Proof of Theorem 5.3.2

	Appendix for Chapter 6
	Proof of Lemma 6.3.2
	Experiment Settings
	Dataset Configuration
	Evaluation Metrics
	Baselines implementation
	Hyper-parameter Configurations

	Extended Experimental Analysis

	Appendix for Chapter 7
	Implementation
	Genetic Programming Algorithm in Racing-CVGP
	Experiment Settings
	Dataset Configuration
	Evaluation Metrics
	Baseline Implementation
	Optimizers
	Hyper-parameter Configuration

	Extra Experimental Analysis
	Impact of Experiment Schedules: See Figure E.2,E.3
	Empirical Running Time: See Figure E.4
	Impact of Evaluation Metrics: See Figure E.5
	Impact of Optimizers

	Appendix for Chapter 8
	Direct Integration of Vertical Symbolic Regression with Deep Policy Gradient
	Constraint-based Integration
	Concatenation-based Integration

	Extended Explanation of Vsr-Dpg method
	Sequential Decision Making Formulation
	Implementation of VSR-DPG

	Experiment Settings
	Evaluation Metrics
	Symbolic Regression on Algebraic Equations
	Extra Results
	Symbolic Regression on Ordinary Differential Equations

	Extra Experiments
	Discovered Algebraic Equations by the Learning Algorithms
	Discovered Differential Equations by each Learning Algorithm

	Appendix for Chapter 9
	Extended Preliminaries
	Extended Explanation of Apps method
	Implementation of Apps
	Limitation and Broader Impact

	Experiment Settings
	Baselines
	Evaluation Metrics
	Computational Resource
	Extended Experimental Results
	Dataset

